找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Conjectures in Arithmetic Algebraic Geometry; A Survey Wilfred W. J. Hulsbergen Book 1992 Springer Fachmedien Wiesbaden 1992 Algebra.Arithm

[復(fù)制鏈接]
樓主: iniquity
11#
發(fā)表于 2025-3-23 11:37:57 | 只看該作者
12#
發(fā)表于 2025-3-23 15:02:12 | 只看該作者
13#
發(fā)表于 2025-3-23 22:04:27 | 只看該作者
14#
發(fā)表于 2025-3-24 01:50:04 | 只看該作者
The Explanation of Flow Systems,for Beilinson’s conjectures. These conjectures are then formulated in such a way that they generalize, at the same time, a conjecture of Deligne on the values of L-functions of motives at so-called critical points. We will state the conjectures only for smooth projective varieties defined over the r
15#
發(fā)表于 2025-3-24 06:03:28 | 只看該作者
16#
發(fā)表于 2025-3-24 10:03:40 | 只看該作者
The Explanation of Network Form,rd conjecture regards this situation for smooth, projective varieties over ., and reduces to a weakened form of the Birch & Swinnerton-Dyer Conjectures in the case of an elliptic curve or an abelian variety over .. The elliptic regulator is generalized to become the determinant of an arithmetic inte
17#
發(fā)表于 2025-3-24 12:37:45 | 只看該作者
Transport for the Space Economyight filtration. In this way it applies to general schemes over the complex numbers. The relation with motivic cohomology is again given by a regulator map that is conjectured to have dense image, at least for smooth schemes that can be defined over a number field. This conjectured property induces
18#
發(fā)表于 2025-3-24 18:30:16 | 只看該作者
19#
發(fā)表于 2025-3-24 20:06:28 | 只看該作者
20#
發(fā)表于 2025-3-25 01:44:47 | 只看該作者
Mixed realizations, mixed motives and Hodge and Tate conjectures for singular varieties,ensions of their pure analogues and the corresponding categories should be tannakian. Deligne has suggested a somewhat different definition of mixed motives, but in both Jannsen’s and his conception the fundamental notion has become the realization.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 23:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
徐闻县| 青海省| 墨玉县| 噶尔县| 利川市| 临江市| 衡东县| 永兴县| 桐柏县| 临清市| 庐江县| 桦南县| 乌海市| 措勤县| 溧阳市| 佛坪县| 湘乡市| 崇左市| 太和县| 长顺县| 固阳县| 邵东县| 泽普县| 奉化市| 唐河县| 兴仁县| 辽中县| 新安县| 天全县| 凤冈县| 贡觉县| 深水埗区| 修水县| 阳朔县| 合水县| 石渠县| 中山市| 凌云县| 长乐市| 侯马市| 天峻县|