找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Conjectures in Arithmetic Algebraic Geometry; A Survey Wilfred W. J. Hulsbergen Book 1992 Springer Fachmedien Wiesbaden 1992 Algebra.Arithm

[復制鏈接]
樓主: iniquity
11#
發(fā)表于 2025-3-23 11:37:57 | 只看該作者
12#
發(fā)表于 2025-3-23 15:02:12 | 只看該作者
13#
發(fā)表于 2025-3-23 22:04:27 | 只看該作者
14#
發(fā)表于 2025-3-24 01:50:04 | 只看該作者
The Explanation of Flow Systems,for Beilinson’s conjectures. These conjectures are then formulated in such a way that they generalize, at the same time, a conjecture of Deligne on the values of L-functions of motives at so-called critical points. We will state the conjectures only for smooth projective varieties defined over the r
15#
發(fā)表于 2025-3-24 06:03:28 | 只看該作者
16#
發(fā)表于 2025-3-24 10:03:40 | 只看該作者
The Explanation of Network Form,rd conjecture regards this situation for smooth, projective varieties over ., and reduces to a weakened form of the Birch & Swinnerton-Dyer Conjectures in the case of an elliptic curve or an abelian variety over .. The elliptic regulator is generalized to become the determinant of an arithmetic inte
17#
發(fā)表于 2025-3-24 12:37:45 | 只看該作者
Transport for the Space Economyight filtration. In this way it applies to general schemes over the complex numbers. The relation with motivic cohomology is again given by a regulator map that is conjectured to have dense image, at least for smooth schemes that can be defined over a number field. This conjectured property induces
18#
發(fā)表于 2025-3-24 18:30:16 | 只看該作者
19#
發(fā)表于 2025-3-24 20:06:28 | 只看該作者
20#
發(fā)表于 2025-3-25 01:44:47 | 只看該作者
Mixed realizations, mixed motives and Hodge and Tate conjectures for singular varieties,ensions of their pure analogues and the corresponding categories should be tannakian. Deligne has suggested a somewhat different definition of mixed motives, but in both Jannsen’s and his conception the fundamental notion has become the realization.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-16 06:24
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
宁南县| 五家渠市| 简阳市| 迁安市| 霞浦县| 湘潭市| 梁平县| 叶城县| 措美县| 疏勒县| 始兴县| 滨州市| 鄂尔多斯市| 库车县| 广丰县| 三都| 大田县| 新竹县| 大埔县| 深圳市| 会昌县| 津南区| 瑞丽市| 双牌县| 宁城县| 揭东县| 鄂伦春自治旗| 射洪县| 阿巴嘎旗| 东乡族自治县| 安陆市| 伊吾县| 丹棱县| 柯坪县| 罗平县| 房产| 荣昌县| 久治县| 青铜峡市| 武清区| 永宁县|