找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Conformally Invariant Metrics and Quasiconformal Mappings; Parisa Hariri,Riku Klén,Matti Vuorinen Book 2020 Springer Nature Switzerland AG

[復(fù)制鏈接]
樓主: Hoover
31#
發(fā)表于 2025-3-26 23:44:00 | 只看該作者
Parisa Hariri,Riku Klén,Matti VuorinenBrings under one roof results previously scattered in many research papers published during the past 50 years since the origin of the three-dimensional theory of quasiconformal and quasiregular mappin
32#
發(fā)表于 2025-3-27 04:21:41 | 只看該作者
Springer Monographs in Mathematicshttp://image.papertrans.cn/c/image/235425.jpg
33#
發(fā)表于 2025-3-27 08:02:30 | 只看該作者
34#
發(fā)表于 2025-3-27 10:11:15 | 只看該作者
35#
發(fā)表于 2025-3-27 15:59:49 | 只看該作者
Hyperbolic Geometryntersecting the given line. Since the days of Euclid, it had been an open problem studied by many generations of mathematicians, whether the parallel postulate follows from the other axioms of geometry.
36#
發(fā)表于 2025-3-27 20:45:15 | 只看該作者
37#
發(fā)表于 2025-3-28 00:12:56 | 只看該作者
Conformally Invariant Metrics and Quasiconformal Mappings978-3-030-32068-3Series ISSN 1439-7382 Series E-ISSN 2196-9922
38#
發(fā)表于 2025-3-28 05:50:25 | 只看該作者
John Chi-Kin Lee,Orlando Nang-Kwok Hontersecting the given line. Since the days of Euclid, it had been an open problem studied by many generations of mathematicians, whether the parallel postulate follows from the other axioms of geometry.
39#
發(fā)表于 2025-3-28 09:45:14 | 只看該作者
Conformally Invariant Metrics and Quasiconformal Mappings
40#
發(fā)表于 2025-3-28 13:19:31 | 只看該作者
Hyperbolic Geometryntersecting the given line. Since the days of Euclid, it had been an open problem studied by many generations of mathematicians, whether the parallel postulate follows from the other axioms of geometry.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 12:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泌阳县| 嵊州市| 桑植县| 五家渠市| 芦溪县| 土默特右旗| 佛坪县| 台北县| 富宁县| 七台河市| 桂阳县| 图们市| 无极县| 眉山市| 桦南县| 云南省| 贡觉县| 盐山县| 田阳县| 根河市| 合山市| 巩留县| 公安县| 安西县| 盐山县| 嵊州市| 吉安市| 建水县| 贞丰县| 唐海县| 林周县| 洛川县| 陵川县| 宁海县| 古丈县| 天长市| 平和县| 庆阳市| 丁青县| 湘潭市| 济南市|