找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Conformal Groups and Related Symmetries Physical Results and Mathematical Background; Proceedings of a Sym A. O. Barut,H. -D. Doebner Confe

[復(fù)制鏈接]
樓主: KEN
21#
發(fā)表于 2025-3-25 05:26:44 | 只看該作者
Transitional Justice in Practiceeted as a homogeneous space of SU(2). An expanding model of the universe is locally approximated by de Sitter spaces. Irreducible representations of the de Sitter group are explicitly constructed in ur theory. From these, Poincaré group representations in Minkowski space with well-defined rest mass
22#
發(fā)表于 2025-3-25 10:26:45 | 只看該作者
https://doi.org/10.1007/978-1-4419-6099-3nformal compactification M of the Minkowski space time. They are interachanged by the space and space-time inversions. It is suggested that Dirac spinor fields should be coupled to a gauge potential in order to get a nontrivial unitary representation of the conformal group in the space of solutions
23#
發(fā)表于 2025-3-25 15:43:57 | 只看該作者
24#
發(fā)表于 2025-3-25 16:33:45 | 只看該作者
25#
發(fā)表于 2025-3-25 23:23:28 | 只看該作者
From Heisenberg algebra to conformal dynamical group,The basic algebraic structures in the quantum theory of the electron, from Heisenberg algebra, kinematic algebra, Galilean, and Poincaré groups, to the internal and external conformal algebras are outlined. The universal role of the conformal dynamical group from electron, H-atom, hadrons, to periodic table is discussed.
26#
發(fā)表于 2025-3-26 04:03:35 | 只看該作者
Path integral realization of a dynamical group,A way to realize a dynamical group in terms of a path integral is illustrated by using the Poschl-Teller oscillator.
27#
發(fā)表于 2025-3-26 04:39:51 | 只看該作者
https://doi.org/10.1007/3-540-17163-0conformal field theory; path integral; quantum field; quantum field theory; supergravity
28#
發(fā)表于 2025-3-26 11:04:13 | 只看該作者
29#
發(fā)表于 2025-3-26 13:31:59 | 只看該作者
Conformal Groups and Related Symmetries Physical Results and Mathematical Background978-3-540-47219-3Series ISSN 0075-8450 Series E-ISSN 1616-6361
30#
發(fā)表于 2025-3-26 17:30:39 | 只看該作者
0075-8450 Overview: 978-3-662-14482-4978-3-540-47219-3Series ISSN 0075-8450 Series E-ISSN 1616-6361
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 21:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东乡县| 临湘市| 改则县| 左云县| 邢台市| 宁陵县| 裕民县| 云梦县| 蓬溪县| 澎湖县| 绥滨县| 旌德县| 全南县| 南平市| 夏津县| 明水县| 灌云县| 康马县| 宿松县| 岢岚县| 石屏县| 齐河县| 大厂| 沁阳市| 宜兴市| 郑州市| 都安| 扶绥县| 曲沃县| 麻江县| 高邑县| 宁乡县| 舒兰市| 凤冈县| 乌什县| 通州市| 伊通| 会宁县| 柳河县| 汾阳市| 错那县|