找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Conformal Field Theory, Automorphic Forms and Related Topics; CFT, Heidelberg, Sep Winfried Kohnen,Rainer Weissauer Conference proceedings

[復(fù)制鏈接]
樓主: 多話
11#
發(fā)表于 2025-3-23 12:56:44 | 只看該作者
https://doi.org/10.1057/9780230510357tended Griess algebra based on conformal design structure. We illustrate an application of our formulae by reformulating the one-to-one correspondence between 2A-elements of the Baby-monster simple group and .?=?1 .?=?7∕10 Virasoro subalgebras inside the Baby-monster vertex operator superalgebra.
12#
發(fā)表于 2025-3-23 15:29:56 | 只看該作者
13#
發(fā)表于 2025-3-23 21:28:57 | 只看該作者
Contributions in Mathematical and Computational Scienceshttp://image.papertrans.cn/c/image/235411.jpg
14#
發(fā)表于 2025-3-24 01:43:03 | 只看該作者
https://doi.org/10.1057/9780230510357tended Griess algebra based on conformal design structure. We illustrate an application of our formulae by reformulating the one-to-one correspondence between 2A-elements of the Baby-monster simple group and .?=?1 .?=?7∕10 Virasoro subalgebras inside the Baby-monster vertex operator superalgebra.
15#
發(fā)表于 2025-3-24 02:59:52 | 只看該作者
16#
發(fā)表于 2025-3-24 08:21:54 | 只看該作者
Thomas J. Bridges,Alison J. CooperRademacher series and describe several applications, including the determination of coefficients of Rademacher sums and a very general form of Zagier duality. We then review the application of Rademacher sums and series to moonshine both monstrous and umbral and highlight several open problems. We c
17#
發(fā)表于 2025-3-24 12:28:25 | 只看該作者
18#
發(fā)表于 2025-3-24 18:32:34 | 只看該作者
19#
發(fā)表于 2025-3-24 22:54:37 | 只看該作者
Transition, Turbulence and Combustionorms (vvmf). To keep the exposition concrete, we restrict here to the special case of the modular group. Among other things, we construct vvmf for arbitrary multipliers, solve the Mittag-Leffler problem here, establish Serre duality and find a dimension formula for holomorphic vvmf, all in far great
20#
發(fā)表于 2025-3-25 01:04:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 10:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
福贡县| 教育| 红桥区| 哈尔滨市| 威远县| 隆林| 嫩江县| 东莞市| 榕江县| 莲花县| 佛学| 隆林| 辛集市| 漳州市| 井陉县| 丰台区| 宜宾市| 安义县| 青海省| 蒙阴县| 禄丰县| 平阳县| 保靖县| 措美县| 太仆寺旗| 马龙县| 灵寿县| 新昌县| 体育| 荃湾区| 吴旗县| 和龙市| 大竹县| 漠河县| 定南县| 靖州| 长汀县| 乌拉特后旗| 应用必备| 法库县| 建湖县|