找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Conformal Field Theory, Automorphic Forms and Related Topics; CFT, Heidelberg, Sep Winfried Kohnen,Rainer Weissauer Conference proceedings

[復(fù)制鏈接]
樓主: 多話
11#
發(fā)表于 2025-3-23 12:56:44 | 只看該作者
https://doi.org/10.1057/9780230510357tended Griess algebra based on conformal design structure. We illustrate an application of our formulae by reformulating the one-to-one correspondence between 2A-elements of the Baby-monster simple group and .?=?1 .?=?7∕10 Virasoro subalgebras inside the Baby-monster vertex operator superalgebra.
12#
發(fā)表于 2025-3-23 15:29:56 | 只看該作者
13#
發(fā)表于 2025-3-23 21:28:57 | 只看該作者
Contributions in Mathematical and Computational Scienceshttp://image.papertrans.cn/c/image/235411.jpg
14#
發(fā)表于 2025-3-24 01:43:03 | 只看該作者
https://doi.org/10.1057/9780230510357tended Griess algebra based on conformal design structure. We illustrate an application of our formulae by reformulating the one-to-one correspondence between 2A-elements of the Baby-monster simple group and .?=?1 .?=?7∕10 Virasoro subalgebras inside the Baby-monster vertex operator superalgebra.
15#
發(fā)表于 2025-3-24 02:59:52 | 只看該作者
16#
發(fā)表于 2025-3-24 08:21:54 | 只看該作者
Thomas J. Bridges,Alison J. CooperRademacher series and describe several applications, including the determination of coefficients of Rademacher sums and a very general form of Zagier duality. We then review the application of Rademacher sums and series to moonshine both monstrous and umbral and highlight several open problems. We c
17#
發(fā)表于 2025-3-24 12:28:25 | 只看該作者
18#
發(fā)表于 2025-3-24 18:32:34 | 只看該作者
19#
發(fā)表于 2025-3-24 22:54:37 | 只看該作者
Transition, Turbulence and Combustionorms (vvmf). To keep the exposition concrete, we restrict here to the special case of the modular group. Among other things, we construct vvmf for arbitrary multipliers, solve the Mittag-Leffler problem here, establish Serre duality and find a dimension formula for holomorphic vvmf, all in far great
20#
發(fā)表于 2025-3-25 01:04:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 14:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁波市| 龙江县| 涿鹿县| 林西县| 宁晋县| 行唐县| 山丹县| 林州市| 滦平县| 共和县| 眉山市| 永登县| 元阳县| 姜堰市| 岳阳县| 宁阳县| 怀化市| 瓮安县| 恩平市| 东海县| 朝阳市| 新河县| 宁海县| 西乡县| 祁门县| 雷山县| 中阳县| 杂多县| 顺义区| 桦甸市| 合江县| 玛纳斯县| 剑阁县| 龙江县| 鄂伦春自治旗| 肇庆市| 布拖县| 南宫市| 无极县| 彰化市| 上杭县|