找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Conformal Field Theory, Automorphic Forms and Related Topics; CFT, Heidelberg, Sep Winfried Kohnen,Rainer Weissauer Conference proceedings

[復(fù)制鏈接]
樓主: 多話
11#
發(fā)表于 2025-3-23 12:56:44 | 只看該作者
https://doi.org/10.1057/9780230510357tended Griess algebra based on conformal design structure. We illustrate an application of our formulae by reformulating the one-to-one correspondence between 2A-elements of the Baby-monster simple group and .?=?1 .?=?7∕10 Virasoro subalgebras inside the Baby-monster vertex operator superalgebra.
12#
發(fā)表于 2025-3-23 15:29:56 | 只看該作者
13#
發(fā)表于 2025-3-23 21:28:57 | 只看該作者
Contributions in Mathematical and Computational Scienceshttp://image.papertrans.cn/c/image/235411.jpg
14#
發(fā)表于 2025-3-24 01:43:03 | 只看該作者
https://doi.org/10.1057/9780230510357tended Griess algebra based on conformal design structure. We illustrate an application of our formulae by reformulating the one-to-one correspondence between 2A-elements of the Baby-monster simple group and .?=?1 .?=?7∕10 Virasoro subalgebras inside the Baby-monster vertex operator superalgebra.
15#
發(fā)表于 2025-3-24 02:59:52 | 只看該作者
16#
發(fā)表于 2025-3-24 08:21:54 | 只看該作者
Thomas J. Bridges,Alison J. CooperRademacher series and describe several applications, including the determination of coefficients of Rademacher sums and a very general form of Zagier duality. We then review the application of Rademacher sums and series to moonshine both monstrous and umbral and highlight several open problems. We c
17#
發(fā)表于 2025-3-24 12:28:25 | 只看該作者
18#
發(fā)表于 2025-3-24 18:32:34 | 只看該作者
19#
發(fā)表于 2025-3-24 22:54:37 | 只看該作者
Transition, Turbulence and Combustionorms (vvmf). To keep the exposition concrete, we restrict here to the special case of the modular group. Among other things, we construct vvmf for arbitrary multipliers, solve the Mittag-Leffler problem here, establish Serre duality and find a dimension formula for holomorphic vvmf, all in far great
20#
發(fā)表于 2025-3-25 01:04:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 14:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
喀喇| 清涧县| 开封市| 江油市| 舟曲县| 伊金霍洛旗| 德钦县| 闽清县| 九龙坡区| 绵阳市| 亳州市| 玉环县| 北宁市| 二连浩特市| 巫溪县| 安阳市| 济南市| 闸北区| 和政县| 上杭县| 增城市| 赤城县| 新营市| 米林县| 丹江口市| 张北县| 阜宁县| 安仁县| 天津市| 卢湾区| 敦化市| 随州市| 酒泉市| 丰县| 锡林郭勒盟| 子长县| 策勒县| 同仁县| 武邑县| 南江县| 龙里县|