找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Conformal Field Theories and Tensor Categories; Proceedings of a Wor Chengming Bai,Jürgen Fuchs,Christoph Schweigert Conference proceedings

[復(fù)制鏈接]
樓主: 戲弄
21#
發(fā)表于 2025-3-25 04:45:39 | 只看該作者
22#
發(fā)表于 2025-3-25 08:00:12 | 只看該作者
23#
發(fā)表于 2025-3-25 12:38:08 | 只看該作者
24#
發(fā)表于 2025-3-25 17:14:09 | 只看該作者
Shinichi Ichimura,Tsuneaki Sato existence of logarithmic modules for triplet vertex algebras. We propose some conjectures and open problems which put the theory of triplet vertex algebras into a broader context. New realizations of logarithmic modules for .-algebras defined via screenings are also presented.
25#
發(fā)表于 2025-3-25 20:35:41 | 只看該作者
26#
發(fā)表于 2025-3-26 02:39:22 | 只看該作者
27#
發(fā)表于 2025-3-26 06:47:40 | 只看該作者
Logarithmic Bulk and Boundary Conformal Field Theory and the Full Centre Construction,lk theories from simpler boundary theories. We then describe the algebraic counterpart of the maximal bulk theory, namely the so-called full centre of an algebra in an abelian braided monoidal category. Finally, we illustrate the previous discussion in the example of the . .-model with central charge 0.
28#
發(fā)表于 2025-3-26 08:51:27 | 只看該作者
,,-Cofinite ,-Algebras and Their Logarithmic Representations, existence of logarithmic modules for triplet vertex algebras. We propose some conjectures and open problems which put the theory of triplet vertex algebras into a broader context. New realizations of logarithmic modules for .-algebras defined via screenings are also presented.
29#
發(fā)表于 2025-3-26 13:50:26 | 只看該作者
30#
發(fā)表于 2025-3-26 17:17:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-28 01:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
德化县| 师宗县| 奉贤区| 榆林市| 宜兴市| 伊通| 扎兰屯市| 安达市| 栾城县| 南召县| 华坪县| 当阳市| 务川| 邓州市| 德安县| 四子王旗| 绥江县| 寻甸| 上思县| 阳城县| 文山县| 天祝| 双牌县| 门源| 乐昌市| 东城区| 蓬莱市| 苏尼特右旗| 宜城市| 图片| 仙游县| 姚安县| 肥乡县| 武鸣县| 延安市| 霍城县| 万安县| 苏尼特右旗| 宾阳县| 临桂县| 威海市|