找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Configuration Spaces; Geometry, Topology a Filippo Callegaro,Frederick Cohen,Mario Salvetti Book 2016 Springer International Publishing Swi

[復制鏈接]
樓主: 銀河
51#
發(fā)表于 2025-3-30 10:18:42 | 只看該作者
Bruno Grancelli,Antonio M. Chiesieric values of its variables . and .. The . variable is closely connected to the traditional Garside structure of the braid group and plays a major role in Krammer’s algebraic proof. The . variable, associated with the dual Garside structure of the braid group, has received less attention. In this a
52#
發(fā)表于 2025-3-30 12:58:44 | 只看該作者
53#
發(fā)表于 2025-3-30 18:36:47 | 只看該作者
https://doi.org/10.1007/978-3-642-44988-8ups to Lie groups ., and to describe their connections to classical representation theory, as well as other structures. Various properties are given when . is replaced by a small category, or the discrete group is given by a right-angled Artin group.
54#
發(fā)表于 2025-3-30 22:57:58 | 只看該作者
Filippo Callegaro,Frederick Cohen,Mario SalvettiHigh-level contributions by leading experts in the field.Fully refereed original papers.Provides an ideal resource for researchers seeking an overview of current trends
55#
發(fā)表于 2025-3-31 01:24:44 | 只看該作者
56#
發(fā)表于 2025-3-31 08:01:50 | 只看該作者
57#
發(fā)表于 2025-3-31 09:10:32 | 只看該作者
58#
發(fā)表于 2025-3-31 17:16:39 | 只看該作者
https://doi.org/10.1007/978-3-642-44988-8ups to Lie groups ., and to describe their connections to classical representation theory, as well as other structures. Various properties are given when . is replaced by a small category, or the discrete group is given by a right-angled Artin group.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-25 19:04
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
迭部县| 西丰县| 唐海县| 略阳县| 磐石市| 晋城| 石首市| 廊坊市| 赤壁市| 武强县| 满洲里市| 宁强县| 平潭县| 楚雄市| 汉川市| 扎赉特旗| 威信县| 中牟县| 晋中市| 普格县| 株洲市| 阿拉善左旗| 石城县| 开江县| 托克逊县| 阳东县| 沿河| 大连市| 汝城县| 麻城市| 姜堰市| 崇义县| 建宁县| 女性| 丰台区| 乾安县| 苏尼特左旗| 区。| 阳西县| 磐安县| 通江县|