找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Configuration Spaces; Geometry, Combinator A. Bjorner,F. Cohen,M. Salvetti Conference proceedings 2012 Scuola Normale Superiore Pisa 2012 a

[復(fù)制鏈接]
樓主: 婉言
41#
發(fā)表于 2025-3-28 15:34:31 | 只看該作者
Marion Peyinghaus,Regina Zeitner groups studied by Lawrence, Krammer and Bigelow are equivalent at generic complex values to the monodromy of the KZ equation with values in the space of null vectors in the tensor product of Verma modules of sl.(.).
42#
發(fā)表于 2025-3-28 19:25:33 | 只看該作者
43#
發(fā)表于 2025-3-29 01:49:29 | 只看該作者
44#
發(fā)表于 2025-3-29 03:43:00 | 只看該作者
A. Bjorner,F. Cohen,M. SalvettiHigh-level contributions.Covers many topics important for several different theories.Of interest to a wide variety of mathematicians
45#
發(fā)表于 2025-3-29 11:08:19 | 只看該作者
Publications of the Scuola Normale Superiorehttp://image.papertrans.cn/c/image/235298.jpg
46#
發(fā)表于 2025-3-29 14:45:04 | 只看該作者
Embeddings of braid groups into mapping class groups and their homology,duce the trivial map in stable homology in the orientable case, but not so in the non-orientable case. We show that these embeddings are non-geometric in the sense that the standard generators of the braid group are not mapped to Dehn twists.
47#
發(fā)表于 2025-3-29 16:41:14 | 只看該作者
48#
發(fā)表于 2025-3-29 20:09:20 | 只看該作者
Quantum and homological representations of braid groups, groups studied by Lawrence, Krammer and Bigelow are equivalent at generic complex values to the monodromy of the KZ equation with values in the space of null vectors in the tensor product of Verma modules of sl.(.).
49#
發(fā)表于 2025-3-30 01:37:34 | 只看該作者
50#
發(fā)表于 2025-3-30 04:09:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 23:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
太和县| 突泉县| 蕲春县| 新兴县| 宁陵县| 依兰县| 敦煌市| 承德市| 富裕县| 拉孜县| 内丘县| 府谷县| 左权县| 呼玛县| 科技| 滨州市| 化州市| 土默特右旗| 屏东市| 昭平县| 济阳县| 周口市| 汾阳市| 若尔盖县| 原阳县| 尚义县| 大安市| 东莞市| 苏尼特左旗| 临安市| 德江县| 新竹县| 镇江市| 沂南县| 通化市| 神农架林区| 新干县| 泸州市| 泾源县| 南宫市| 保德县|