找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Configuration Spaces; Geometry, Combinator A. Bjorner,F. Cohen,M. Salvetti Conference proceedings 2012 Scuola Normale Superiore Pisa 2012 a

[復(fù)制鏈接]
樓主: 婉言
41#
發(fā)表于 2025-3-28 15:34:31 | 只看該作者
Marion Peyinghaus,Regina Zeitner groups studied by Lawrence, Krammer and Bigelow are equivalent at generic complex values to the monodromy of the KZ equation with values in the space of null vectors in the tensor product of Verma modules of sl.(.).
42#
發(fā)表于 2025-3-28 19:25:33 | 只看該作者
43#
發(fā)表于 2025-3-29 01:49:29 | 只看該作者
44#
發(fā)表于 2025-3-29 03:43:00 | 只看該作者
A. Bjorner,F. Cohen,M. SalvettiHigh-level contributions.Covers many topics important for several different theories.Of interest to a wide variety of mathematicians
45#
發(fā)表于 2025-3-29 11:08:19 | 只看該作者
Publications of the Scuola Normale Superiorehttp://image.papertrans.cn/c/image/235298.jpg
46#
發(fā)表于 2025-3-29 14:45:04 | 只看該作者
Embeddings of braid groups into mapping class groups and their homology,duce the trivial map in stable homology in the orientable case, but not so in the non-orientable case. We show that these embeddings are non-geometric in the sense that the standard generators of the braid group are not mapped to Dehn twists.
47#
發(fā)表于 2025-3-29 16:41:14 | 只看該作者
48#
發(fā)表于 2025-3-29 20:09:20 | 只看該作者
Quantum and homological representations of braid groups, groups studied by Lawrence, Krammer and Bigelow are equivalent at generic complex values to the monodromy of the KZ equation with values in the space of null vectors in the tensor product of Verma modules of sl.(.).
49#
發(fā)表于 2025-3-30 01:37:34 | 只看該作者
50#
發(fā)表于 2025-3-30 04:09:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 23:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
上杭县| 布拖县| 饶河县| 陈巴尔虎旗| 新宾| 津南区| 温泉县| 元阳县| 宁乡县| 沙湾县| 平南县| 方正县| 辛集市| 柘城县| 正定县| 瑞安市| 花莲市| 武夷山市| 共和县| 宣恩县| 纳雍县| 新绛县| 赤壁市| 专栏| 阳信县| 关岭| 新河县| 垦利县| 钦州市| 墨脱县| 龙游县| 嫩江县| 花垣县| 吉首市| 潢川县| 信阳市| 新津县| 昌黎县| 铜山县| 沭阳县| 北安市|