找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Conference on Commutative Algebra; Lawrence, Kansas 197 James W. Brewer,Edgar A. Rutter Conference proceedings 1973 Springer-Verlag Berlin

[復(fù)制鏈接]
樓主: 徽章
21#
發(fā)表于 2025-3-25 05:07:49 | 只看該作者
https://doi.org/10.1007/978-3-0348-8419-8If R and S are rings with S a unitary extension of R, the faithfulness of the functor S ..(?) is studied.
22#
發(fā)表于 2025-3-25 07:40:26 | 只看該作者
Introduction: An Autoethnographic Journey,This note is concerned with estimates of the minimal number of generators for maximal ideals in polynomial rings — estimates extending the well known facts of the case wherein the coefficient ring is a field.
23#
發(fā)表于 2025-3-25 12:32:19 | 只看該作者
https://doi.org/10.1007/1-4020-4422-4This paper considers ten conditions on the set of overrings of an integral domain D with identity. Each of these conditions is satisfied if D is a Prüfer domain. Relations among the conditions are discussed, and several related questions are mentioned.
24#
發(fā)表于 2025-3-25 18:46:10 | 只看該作者
https://doi.org/10.1007/1-4020-4422-4A large class of rings of algebraic functions are shown to be principal ideal domains but not Euclidean with respect to any possible algorithm.
25#
發(fā)表于 2025-3-25 21:53:27 | 只看該作者
https://doi.org/10.1007/1-4020-4422-4This note contains generalizations of two results of Abhyankar [1] which give a bound for the embedding dimension of certain local rings in terms of the multiplicity and the dimension of the ring.
26#
發(fā)表于 2025-3-26 04:02:31 | 只看該作者
,A note on the faithfulness of the functor S ,,(?),If R and S are rings with S a unitary extension of R, the faithfulness of the functor S ..(?) is studied.
27#
發(fā)表于 2025-3-26 06:34:20 | 只看該作者
Maximal ideals in polynomial rings,This note is concerned with estimates of the minimal number of generators for maximal ideals in polynomial rings — estimates extending the well known facts of the case wherein the coefficient ring is a field.
28#
發(fā)表于 2025-3-26 10:03:26 | 只看該作者
,Prüfer-like conditions on the set of overrings of an integral domain,This paper considers ten conditions on the set of overrings of an integral domain D with identity. Each of these conditions is satisfied if D is a Prüfer domain. Relations among the conditions are discussed, and several related questions are mentioned.
29#
發(fā)表于 2025-3-26 13:32:27 | 只看該作者
30#
發(fā)表于 2025-3-26 19:11:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 12:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
资兴市| 吕梁市| 横山县| 西峡县| 内江市| 克拉玛依市| 石泉县| 乐陵市| 威信县| 浙江省| 五常市| 汝南县| 山东省| 海晏县| 格尔木市| 德惠市| 明溪县| 石狮市| 三门县| 吉安市| 乐清市| 阳城县| 黔西| 石泉县| 九江县| 凤冈县| 永兴县| 东丽区| 泸西县| 淮南市| 军事| 桂平市| 宁陵县| 肇庆市| 普洱| 霍林郭勒市| 安乡县| 额济纳旗| 莱芜市| 兰考县| 定远县|