找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Conditional and Typed Rewriting Systems; 4th International Wo Nachum Dershowitz,Naomi Lindenstrauss Conference proceedings 1995 Springer-Ve

[復(fù)制鏈接]
樓主: Retina
41#
發(fā)表于 2025-3-28 18:00:09 | 只看該作者
A calculus for rippling,ng with conventional term rewriting. Such a combination offers the flexibility and uniformity of conventional rewriting with the highly goal-directed nature of rippling. The calculus we present here is implemented and has been integrated into the Edinburgh CLAM proof-planning system.
42#
發(fā)表于 2025-3-28 21:13:51 | 只看該作者
Well-foundedness of term orderings,e . and . which can not be dealt with by Kruskal‘s theorem..For finite alphabets we present completeness results, i. e., a term rewriting system terminates if and only if it is compatible with an order satisfying the criterion. For infinite alphabets the same completeness results hold for a slightly different criterion.
43#
發(fā)表于 2025-3-29 00:57:10 | 只看該作者
44#
發(fā)表于 2025-3-29 06:14:06 | 只看該作者
45#
發(fā)表于 2025-3-29 10:28:17 | 只看該作者
The complexity of testing ground reducibility for linear word rewriting systems with variables,plete if both . and . are restricted to be linear. The proof is based on the construction of a deterministic finite automaton for the language of words reducible by .. The construction generalizes the well-known Aho-Corasick automaton for string matching against a set of keywords.
46#
發(fā)表于 2025-3-29 12:37:04 | 只看該作者
47#
發(fā)表于 2025-3-29 18:52:12 | 只看該作者
48#
發(fā)表于 2025-3-29 21:09:13 | 只看該作者
49#
發(fā)表于 2025-3-30 00:56:07 | 只看該作者
https://doi.org/10.1007/11732488heorem and we can use various proof-theoretic techniques such as Kleene‘s permutability theorem. The coherence is proved by showing that the reconstruction of derivations for the given class of arrows is deterministic and unique up to equivalence.
50#
發(fā)表于 2025-3-30 07:06:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-16 18:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临沧市| 罗源县| 驻马店市| 横峰县| 康定县| 乌兰察布市| 乐昌市| 芜湖市| 长白| 大城县| 赫章县| 双牌县| 霍林郭勒市| 苍梧县| 栖霞市| 呼伦贝尔市| 永登县| 竹溪县| 高邮市| 巨鹿县| 毕节市| 台东市| 神池县| 阿拉善左旗| 穆棱市| 衡阳县| 依安县| 威远县| 汤阴县| 柞水县| 汽车| 炉霍县| 昔阳县| 金寨县| 昂仁县| 武夷山市| 绍兴市| 太和县| 峨边| 依兰县| 应城市|