找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Concepts and Real-Time Applications of Deep Learning; Smriti Srivastava,Manju Khari,Parul Arora Book 2021 The Editor(s) (if applicable) an

[復(fù)制鏈接]
查看: 32067|回復(fù): 45
樓主
發(fā)表于 2025-3-21 18:07:11 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Concepts and Real-Time Applications of Deep Learning
編輯Smriti Srivastava,Manju Khari,Parul Arora
視頻videohttp://file.papertrans.cn/235/234907/234907.mp4
概述Presents a comprehensive look at deep learning and its multidisciplinary applications, concentrating on advances of deep learning architectures.Includes a survey of deep learning problems and solution
叢書名稱EAI/Springer Innovations in Communication and Computing
圖書封面Titlebook: Concepts and Real-Time Applications of Deep Learning;  Smriti Srivastava,Manju Khari,Parul Arora Book 2021 The Editor(s) (if applicable) an
描述.This book provides readers with a comprehensive and recent exposition in deep learning and its multidisciplinary applications, with a concentration on advances of deep learning architectures. The book discusses various artificial intelligence (AI) techniques based on deep learning architecture with applications in natural language processing, semantic knowledge, forecasting and many more.? The authors shed light on various applications that can benefit from the use of deep learning in pattern recognition, person re-identification in surveillance videos, action recognition in videos, image and video captioning. The book also highlights how deep learning concepts can be interwoven with more modern concepts to yield applications in multidisciplinary fields..Presents a comprehensive look at deep learning and its multidisciplinary applications, concentrating on advances of deep learning architectures;.Includes a survey of deep learning problems and solutions,?identifying?the main open issues, innovations and latest technologies;.Shows industrial deep learning in practice with examples/cases, efforts, challenges, and strategic approaches..
出版日期Book 2021
關(guān)鍵詞Deep learning; Machine Learning; Artificial Intelligence; Multi-agent learning; Intelligent control of r
版次1
doihttps://doi.org/10.1007/978-3-030-76167-7
isbn_softcover978-3-030-76169-1
isbn_ebook978-3-030-76167-7Series ISSN 2522-8595 Series E-ISSN 2522-8609
issn_series 2522-8595
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Concepts and Real-Time Applications of Deep Learning影響因子(影響力)




書目名稱Concepts and Real-Time Applications of Deep Learning影響因子(影響力)學(xué)科排名




書目名稱Concepts and Real-Time Applications of Deep Learning網(wǎng)絡(luò)公開度




書目名稱Concepts and Real-Time Applications of Deep Learning網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Concepts and Real-Time Applications of Deep Learning被引頻次




書目名稱Concepts and Real-Time Applications of Deep Learning被引頻次學(xué)科排名




書目名稱Concepts and Real-Time Applications of Deep Learning年度引用




書目名稱Concepts and Real-Time Applications of Deep Learning年度引用學(xué)科排名




書目名稱Concepts and Real-Time Applications of Deep Learning讀者反饋




書目名稱Concepts and Real-Time Applications of Deep Learning讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:49:00 | 只看該作者
Text-Independent Speaker Recognition Using Deep Learningto text-dependent speaker recognition and text-independent speaker recognition systems. In a text-dependent system, the recognition phrases are fixed (known beforehand). The user can be prompted to read a randomly selected sequence of numbers. However, in a text-independent speaker recognition syste
板凳
發(fā)表于 2025-3-22 02:39:31 | 只看該作者
地板
發(fā)表于 2025-3-22 06:21:15 | 只看該作者
Emotion Recognition from Speech Signals Using Machine Learning and Deep Learning Techniquesrithms, these can be applied to develop highly accurate speech emotion recognition systems (SER systems). Hence, this paper explores deep neural network (DNN) architectures and machine learning approaches to recognise emotions from speech signals. The project involves multiple steps, starting with t
5#
發(fā)表于 2025-3-22 09:32:16 | 只看該作者
Micro-expression Detection Using Main Directional Maximal Differential Analysis (MDMD) Methodly a fraction of a second, so it’s difficult to deceit such expressions. The subtleness of these expressions poses a significant challenge to the naked eye; hence, a lot of work and researches has been made to detect and recognize these facial micro-expressions. One of the challenges for the detecti
6#
發(fā)表于 2025-3-22 14:57:16 | 只看該作者
7#
發(fā)表于 2025-3-22 19:47:18 | 只看該作者
8#
發(fā)表于 2025-3-22 22:37:10 | 只看該作者
Bone Cancer Survivability Prognosis with KNN and Genetic Algorithmsians in providing more informed decisions specifically in evaluating proper probability attributes (risk) in relation to outcome (impact) and subsequently the overall result (expected outcome) of treatment procedures. Predictability on survival in health care is very much related to a decision-makin
9#
發(fā)表于 2025-3-23 01:42:43 | 只看該作者
BeamAtt: Generating Medical Diagnosis from Chest X-Rays Using Sampling-Based Intelligence economically downtrodden nations, this produces opportunity for the poor to acquire world-class treatment from around the globe with an efficient time to market. Chest X-ray images are integral to the task of diagnosis and treatment of respiratory problems. In this paper, we propose BeamAtt: an end
10#
發(fā)表于 2025-3-23 06:55:39 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 22:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
揭东县| 迁安市| 元氏县| 吉木萨尔县| 金沙县| 攀枝花市| 东乌| 达日县| 安康市| 肃南| 铁力市| 麻阳| 广州市| 宜州市| 蓝田县| 台东县| 同德县| 通海县| 江孜县| 桐梓县| 元阳县| 牡丹江市| 鄂伦春自治旗| 延安市| 昌乐县| 上犹县| 浑源县| 黄大仙区| 通渭县| 沾益县| 平陆县| 卢龙县| 钦州市| 安达市| 都江堰市| 湖州市| 镇巴县| 景泰县| 株洲县| 天水市| 准格尔旗|