找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Concepts & Images; Visual Mathematics Arthur L. Loeb Book 1993 Springer Science+Business Media New York 1993 design.mathematics.synergetics

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 07:06:36 | 只看該作者
22#
發(fā)表于 2025-3-25 09:47:52 | 只看該作者
23#
發(fā)表于 2025-3-25 13:03:21 | 只看該作者
Hexagonal Tessellations,ions. Figure 10-2 shows a hexagonal tessellation in which pairs of opposite edges of each tile are mutually parallel and of equal length. The angles α and . occur twice in each hexagon; since the angles of a hexagon add up to 720°, the two remaining angles are 360° - α - ..
24#
發(fā)表于 2025-3-25 19:13:22 | 只看該作者
25#
發(fā)表于 2025-3-25 20:40:52 | 只看該作者
26#
發(fā)表于 2025-3-26 00:20:58 | 只看該作者
27#
發(fā)表于 2025-3-26 05:37:33 | 只看該作者
https://doi.org/10.1007/978-3-0348-5416-0 Diophantes of Alexandria, who is presumed to have discovered them. In general, all variables in such an equation are to be rational; in our case they are integers. Although in general one cannot solve a single equation in three variables, the restriction that the variables be integers limits us to a finite number of solutions.
28#
發(fā)表于 2025-3-26 12:05:35 | 只看該作者
Unions of Perfect Matchings in Cubic Graphsions. Figure 10-2 shows a hexagonal tessellation in which pairs of opposite edges of each tile are mutually parallel and of equal length. The angles α and . occur twice in each hexagon; since the angles of a hexagon add up to 720°, the two remaining angles are 360° - α - ..
29#
發(fā)表于 2025-3-26 15:27:38 | 只看該作者
https://doi.org/10.1007/978-1-4612-0343-8design; mathematics; synergetics
30#
發(fā)表于 2025-3-26 17:52:43 | 只看該作者
978-1-4612-6716-4Springer Science+Business Media New York 1993
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 16:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
正镶白旗| 绥宁县| 屏南县| 盈江县| 汶上县| 左云县| 舒兰市| 红安县| 天镇县| 马鞍山市| 遂川县| 海伦市| 龙岩市| 济阳县| 海兴县| 都匀市| 江油市| 夏津县| 饶平县| 鱼台县| 尤溪县| 新巴尔虎左旗| 府谷县| 桃江县| 巴彦淖尔市| 喀什市| 海城市| 姚安县| 双柏县| 巴林左旗| 陇西县| 西丰县| 古丈县| 静宁县| 大田县| 奉贤区| 呼图壁县| 忻州市| 甘南县| 长阳| 华安县|