找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computing with Foresight and Industry; 15th Conference on C Florin Manea,Barnaby Martin,Giuseppe Primiero Conference proceedings 2019 Sprin

[復(fù)制鏈接]
樓主: squamous-cell
11#
發(fā)表于 2025-3-23 11:33:36 | 只看該作者
https://doi.org/10.1007/b139077lgen’s theorem and lowness. Van Lambalgen’s theorem holds for Schnorr randomness with the uniform relativization, but not with the usual relativization. Schnorr triviality is equivalent to lowness for Schnorr randomness with the uniform relativization, but not with the usual relativization. We also discuss some related known results.
12#
發(fā)表于 2025-3-23 17:40:05 | 只看該作者
13#
發(fā)表于 2025-3-23 18:59:31 | 只看該作者
Uniform Relativization,lgen’s theorem and lowness. Van Lambalgen’s theorem holds for Schnorr randomness with the uniform relativization, but not with the usual relativization. Schnorr triviality is equivalent to lowness for Schnorr randomness with the uniform relativization, but not with the usual relativization. We also discuss some related known results.
14#
發(fā)表于 2025-3-23 23:30:01 | 只看該作者
15#
發(fā)表于 2025-3-24 02:39:12 | 只看該作者
16#
發(fā)表于 2025-3-24 07:52:18 | 只看該作者
17#
發(fā)表于 2025-3-24 11:04:45 | 只看該作者
18#
發(fā)表于 2025-3-24 15:00:25 | 只看該作者
19#
發(fā)表于 2025-3-24 20:37:13 | 只看該作者
https://doi.org/10.1007/BFb0034453hese spectra may be characterized by the ability to enumerate an arbitrary . set. This is the first proof that a computable field can fail to have a computable copy with a computable transcendence basis.
20#
發(fā)表于 2025-3-25 01:47:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 05:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
抚州市| 日喀则市| 靖边县| 蓝山县| 五家渠市| 遵义市| 沈丘县| 东兴市| 衡南县| 林口县| 三原县| 庆云县| 峨边| 济宁市| 郎溪县| 措美县| 永德县| 武平县| 都匀市| 宁波市| 大渡口区| 河西区| 西吉县| 扎兰屯市| 烟台市| 格尔木市| 铁力市| 仪征市| 扶沟县| 五莲县| 荣成市| 兰溪市| 垫江县| 万盛区| 聊城市| 渝北区| 临武县| 彰化县| 滦平县| 集贤县| 清水河县|