找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computing and Combinatorics; 4th Annual Internati Wen-Lian Hsu,Ming-Yang Kao Conference proceedings 1998 Springer-Verlag Berlin Heidelberg

[復(fù)制鏈接]
樓主: 贊美
31#
發(fā)表于 2025-3-27 00:37:01 | 只看該作者
32#
發(fā)表于 2025-3-27 02:45:39 | 只看該作者
33#
發(fā)表于 2025-3-27 07:17:05 | 只看該作者
34#
發(fā)表于 2025-3-27 11:07:00 | 只看該作者
35#
發(fā)表于 2025-3-27 16:13:02 | 只看該作者
36#
發(fā)表于 2025-3-27 21:30:14 | 只看該作者
https://doi.org/10.1007/978-1-4615-2197-6dvance, then the optimal competitive ratio is 1 + 2./(. ? 1).. We show that if an upper bound of . on the distance to the target is known in advance, then the competitive ratio of any searchst rategy is at least 1 + 2./(. ? 1). ? .(1/log.) which is also optimal—but in a stricter sense..We also const
37#
發(fā)表于 2025-3-28 00:16:19 | 只看該作者
Alan P. Imeson (Technical Sales) of binary trees. For two arbitrary triangulations in which each vertex is an end of at most . diagonals, Algorithm A has the approximation ratio .For triangulations containing no internal triangles, Algorithm B has the approximation ratio 1.97. Two self-interesting lower bounds on the diagonal-flip
38#
發(fā)表于 2025-3-28 04:26:22 | 只看該作者
Thickening and Gelling Agents for Foodrticle by the other particles. Depending on different applications, the pairwise interaction could be either gravitational or Lennard-Jones. In both cases, the force between two particles vanishes as the distance between them approaches to infinity. Since there are .(.?1)/2 pairs, direct method requ
39#
發(fā)表于 2025-3-28 06:22:26 | 只看該作者
40#
發(fā)表于 2025-3-28 11:10:47 | 只看該作者
Thickening and Gelling Agents for Foodomized algorithms (e.g. probabilistic Turing machines) assume the availability of a random binary source that can generate independent random bits in unit time with uniform probability. This makes the task trivial if . is a power of 2. However, exact uniform generation algorithms with bounded run ti
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 01:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
陆丰市| 遵义县| 永靖县| 武邑县| 建宁县| 曲沃县| 邳州市| 璧山县| 方山县| 无棣县| 孝义市| 阜阳市| 张家界市| 南部县| 天水市| 五莲县| 铜梁县| 新丰县| 许昌市| 蕉岭县| 秭归县| 绥阳县| 凭祥市| 南岸区| 上杭县| 临海市| 遂昌县| 沙田区| 开远市| 青州市| 财经| 富平县| 荥阳市| 林甸县| 高雄市| 江津市| 芮城县| 新邵县| 嘉峪关市| 讷河市| 新野县|