找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computing and Combinatorics; 6th Annual Internati Ding-Zhu Du,Peter Eades,Arun Sharma Conference proceedings 2000 Springer-Verlag Berlin He

[復(fù)制鏈接]
樓主: 指責(zé)
61#
發(fā)表于 2025-4-1 02:03:58 | 只看該作者
62#
發(fā)表于 2025-4-1 09:51:19 | 只看該作者
Computing Optimal Embeddings for Planar Graphsenchmark graphs show that we are able to solve the problem for graphs with 100 vertices in less than one second and that the necessary data structures for the optimization can be build in less than 12 seconds.
63#
發(fā)表于 2025-4-1 10:19:27 | 只看該作者
Optimal Coding with One Asymmetric Error: Below the Sphere Packing Boundng attention on the case . = 1; in this self-contained paper we shall give tight upper and lower bounds for the half-lie problem. For infinitely many .’s our bounds turn out to be matching, and the optimal solution is explicitly given, thus strengthening previous estimates by Rivest, Meyer et al.
64#
發(fā)表于 2025-4-1 17:47:03 | 只看該作者
Theoretical Problems Related to the Internetce of a new generation of foundational problems for Theoretical Computer Science. These new theoretical challenges emanate from several novel aspects of the Internet: (a) Its unprecedented size, diversity, and availability as an information repository; (b) its novel nature as a computer system that
65#
發(fā)表于 2025-4-1 21:26:14 | 只看該作者
Recent Progress and Prospects for Integer Factorisation Algorithmssecurity depends on the presumed difficulty of solving these problems. This paper considers primarily the integer factorisation problem. In recent years the limits of the best integer factorisation algorithms have been extended greatly, due in part to Moore’s law and in part to algorithmic improveme
66#
發(fā)表于 2025-4-2 01:01:29 | 只看該作者
Approximating Uniform Triangular Meshes in Polygonsr of . using . Steiner points. More specifically, we want to find both a set .. of . points inside ., and a triangulation of . using .., with respect to the following minimization criteria: (1) ratio of the maximum edge length to the minimum one, (2) maximum edge length, and (3) maximum triangle per
67#
發(fā)表于 2025-4-2 02:57:11 | 只看該作者
68#
發(fā)表于 2025-4-2 10:27:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 02:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
微山县| 广元市| 抚松县| 醴陵市| 大方县| 西和县| 沾益县| 龙南县| 清远市| 莱州市| 图木舒克市| 阿克苏市| 宁南县| 香河县| 武平县| 江津市| 平凉市| 通榆县| 霍林郭勒市| 丹东市| 根河市| 青田县| 义马市| 新丰县| 得荣县| 金阳县| 江阴市| 江源县| 金塔县| 开封市| 来宾市| 阳东县| 彭水| 新竹市| 荔波县| 茂名市| 定襄县| 天等县| 剑川县| 桦南县| 贡嘎县|