找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computing and Combinatorics; 6th Annual Internati Ding-Zhu Du,Peter Eades,Arun Sharma Conference proceedings 2000 Springer-Verlag Berlin He

[復(fù)制鏈接]
樓主: 指責(zé)
61#
發(fā)表于 2025-4-1 02:03:58 | 只看該作者
62#
發(fā)表于 2025-4-1 09:51:19 | 只看該作者
Computing Optimal Embeddings for Planar Graphsenchmark graphs show that we are able to solve the problem for graphs with 100 vertices in less than one second and that the necessary data structures for the optimization can be build in less than 12 seconds.
63#
發(fā)表于 2025-4-1 10:19:27 | 只看該作者
Optimal Coding with One Asymmetric Error: Below the Sphere Packing Boundng attention on the case . = 1; in this self-contained paper we shall give tight upper and lower bounds for the half-lie problem. For infinitely many .’s our bounds turn out to be matching, and the optimal solution is explicitly given, thus strengthening previous estimates by Rivest, Meyer et al.
64#
發(fā)表于 2025-4-1 17:47:03 | 只看該作者
Theoretical Problems Related to the Internetce of a new generation of foundational problems for Theoretical Computer Science. These new theoretical challenges emanate from several novel aspects of the Internet: (a) Its unprecedented size, diversity, and availability as an information repository; (b) its novel nature as a computer system that
65#
發(fā)表于 2025-4-1 21:26:14 | 只看該作者
Recent Progress and Prospects for Integer Factorisation Algorithmssecurity depends on the presumed difficulty of solving these problems. This paper considers primarily the integer factorisation problem. In recent years the limits of the best integer factorisation algorithms have been extended greatly, due in part to Moore’s law and in part to algorithmic improveme
66#
發(fā)表于 2025-4-2 01:01:29 | 只看該作者
Approximating Uniform Triangular Meshes in Polygonsr of . using . Steiner points. More specifically, we want to find both a set .. of . points inside ., and a triangulation of . using .., with respect to the following minimization criteria: (1) ratio of the maximum edge length to the minimum one, (2) maximum edge length, and (3) maximum triangle per
67#
發(fā)表于 2025-4-2 02:57:11 | 只看該作者
68#
發(fā)表于 2025-4-2 10:27:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 05:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
都江堰市| 梅河口市| 樟树市| 田林县| 固安县| 独山县| 钟山县| 蓬莱市| 建德市| 辉南县| 桦川县| 神池县| 望城县| 休宁县| 安达市| 马龙县| 滨州市| 清徐县| 离岛区| 兴义市| 田阳县| 沈阳市| 白沙| 连城县| 湟源县| 罗源县| 张北县| 安多县| 犍为县| 三明市| 柳州市| 克东县| 洛宁县| 江华| 永顺县| 磐安县| 上犹县| 紫金县| 微博| 枣庄市| 巫山县|