找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computing and Combinatorics; 8th Annual Internati Oscar H. Ibarra,Louxin Zhang Conference proceedings 2002 Springer-Verlag Berlin Heidelber

[復(fù)制鏈接]
樓主: digestive-tract
21#
發(fā)表于 2025-3-25 04:19:04 | 只看該作者
3.1.3 Comments on the presentation of data,d that the computation would involve an impossible amount of computer time, that the size and repetitiveness of the genome would confound all attempts at assembly should sufficient computer efficiency be achieved, and that even if an assembly were produced it would be of an extremely poor quality and partial nature.
22#
發(fā)表于 2025-3-25 07:32:39 | 只看該作者
3.1.3 Comments on the presentation of data,lems in . (denoted as .) with respect to this (2 + .(.))-SAT model. We prove that the restricted version of it is not in . under the assumption . ≠.. Actually it is indeed in . under some stronger but plausible assumption, specifically, the Exponential-Time Hypothesis (.) which was introduced by Impagliazzo and Paturi.
23#
發(fā)表于 2025-3-25 12:56:24 | 只看該作者
1.2 List of symbols and abbreviations,losed under complement. The latter condition is one of the main open problems in this area..As an application of our techniques we show that the problem to decide whether a matrix is diagonalizable is complete for ..(.=.), the ..-..=..
24#
發(fā)表于 2025-3-25 18:05:29 | 只看該作者
3.1.3 Comments on the presentation of data,s and runs in .(log .) time with high probability, where . is the number of vertices of the input graph. The second algorithm is the first linear-time algorithm to 5-total-color subcubic graphs. The third algorithm generalizes this to the first linear-time algorithm to 5-list-total-color subcubic graphs.
25#
發(fā)表于 2025-3-25 20:46:39 | 只看該作者
3.1.2 Estimation method for alloys,lem can be solved in .(..(|.|, |.|) + log|.|) time using .(..(|.|, |.|) + (|.| + |.|)/log|.|) processors on ... Moreover, if . is represented by its decomposition tree form, the problem can be solved optimally in .(log |.|) time using .((|.| + |.|)/log|.|) processors on an EREW PRAM.
26#
發(fā)表于 2025-3-26 02:35:05 | 只看該作者
27#
發(fā)表于 2025-3-26 05:39:59 | 只看該作者
28#
發(fā)表于 2025-3-26 10:22:49 | 只看該作者
29#
發(fā)表于 2025-3-26 14:45:00 | 只看該作者
30#
發(fā)表于 2025-3-26 17:35:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 01:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
辉县市| 锡林浩特市| 绥棱县| 兴国县| 西乌珠穆沁旗| 庆云县| 常山县| 平果县| 即墨市| 亚东县| 博兴县| 宁津县| 克什克腾旗| 桓台县| 台安县| 泾源县| 永昌县| 枣阳市| 宁海县| 桑日县| 遂宁市| 恩平市| 崇义县| 四川省| 凤城市| 张家界市| 漠河县| 汕头市| 梁平县| 湟源县| 犍为县| 剑阁县| 新龙县| 疏附县| 兴安盟| 太仓市| 如皋市| 南京市| 洛隆县| 龙里县| 华池县|