找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computing Statistics under Interval and Fuzzy Uncertainty; Applications to Comp Hung T. Nguyen,Vladik Kreinovich,Gang Xiang Book 20121st ed

[復(fù)制鏈接]
樓主: polysomnography
61#
發(fā)表于 2025-4-1 03:54:59 | 只看該作者
62#
發(fā)表于 2025-4-1 07:30:52 | 只看該作者
Types of Interval Data Sets: Towards Feasible Algorithmsharacteristics are mean and variance. We already know that computing the mean under interval uncertainty is straightforward. However, as the previous chapter shows, computing variance . under interval uncertainty is, in general, an NP-hard (computationally difficult) problem. As we will see in the f
63#
發(fā)表于 2025-4-1 11:08:26 | 只看該作者
Computing Variance under Interval Uncertainty: Efficient Algorithmsnt . can be always computed in feasible (polynomial) time). Since we cannot always efficiently compute the upper endpoint . , we therefore need to consider cases when such an efficient computation may be possible.
64#
發(fā)表于 2025-4-1 17:31:21 | 只看該作者
Computing Variance under Hierarchical Privacy-Related Interval Uncertaintye desired statistical characteristics..To prevent privacy violations, we replace the original values of the quasiidentifier variables with ranges. For example, we divide the set of all possible ages into ranges [0, 10], [10, 20], [20, 30], etc. Then, instead of storing the actual age of 26, we only
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 18:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
建宁县| 修文县| 阿拉善左旗| 台东县| 水富县| 桐柏县| 科尔| 合水县| 菏泽市| 灵台县| 保靖县| 富蕴县| 潍坊市| 鄯善县| 阿鲁科尔沁旗| 五常市| 綦江县| 乌鲁木齐县| 项城市| 白朗县| 蛟河市| 宜川县| 特克斯县| 岚皋县| 浪卡子县| 彭水| 三门县| 东兰县| 灌阳县| 昭苏县| 阿尔山市| 南漳县| 安陆市| 呼伦贝尔市| 宁强县| 会泽县| 临朐县| 石城县| 长泰县| 来安县| 密山市|