找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computing Statistics under Interval and Fuzzy Uncertainty; Applications to Comp Hung T. Nguyen,Vladik Kreinovich,Gang Xiang Book 20121st ed

[復(fù)制鏈接]
樓主: polysomnography
41#
發(fā)表于 2025-3-28 16:18:52 | 只看該作者
Towards a Formalization of Digital Forensics . . .: .. In many practical applications, we need to estimate the sample variance . = . · ., where . = . · . ..
42#
發(fā)表于 2025-3-28 19:42:56 | 只看該作者
43#
發(fā)表于 2025-3-29 01:11:51 | 只看該作者
44#
發(fā)表于 2025-3-29 03:28:57 | 只看該作者
Computing under Interval Uncertainty: When Measurement Errors Are Small: . .. When the measurement errors Δ. are relatively small, we can use a simplification called .. The main idea of linearization is as follows.
45#
發(fā)表于 2025-3-29 10:05:25 | 只看該作者
Computing under Interval Uncertainty: Computational ComplexityIn this chapter, we will briefly describe the computational complexity of the range estimation problem under interval uncertainty.. .. Let us start with the simplest case of a linear function. = .(.,..., .) = . + . .· ...In this case, substituting the (approximate) measured values ., we get the approximate value. = . + . .· .for ..
46#
發(fā)表于 2025-3-29 14:31:03 | 只看該作者
47#
發(fā)表于 2025-3-29 17:12:02 | 只看該作者
48#
發(fā)表于 2025-3-29 23:04:47 | 只看該作者
Computing Variance under Interval Uncertainty: An Example of an NP-Hard Problem . . .: .. In many practical applications, we need to estimate the sample variance . = . · ., where . = . · . ..
49#
發(fā)表于 2025-3-30 02:16:18 | 只看該作者
Computing under Fuzzy Uncertainty Can Be Reduced to Computing under Interval Uncertaintyrst reformulate fuzzy techniques in an interval-related form..In some situations, an expert knows exactly which values of . are possible and which are not. In this situation, the expert’s knowledge can be naturally represented by describing the set of all possible values.
50#
發(fā)表于 2025-3-30 06:21:37 | 只看該作者
Computing under Interval Uncertainty: General Algorithmssome applications, it is important to guarantee that the (unknown) actual value . of a certain quantity does not exceed a certain threshold .0. The only way to guarantee this is to have an interval . = [., . ] which is guaranteed to contain . (i.e., for which . ? . ) and for which . ≤ .0.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 14:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
墨玉县| 泰兴市| 蓬莱市| 长宁区| 宁陵县| 都兰县| 财经| 汉源县| 射洪县| 房山区| 成都市| 台北市| 扎兰屯市| 固始县| 黄梅县| 海阳市| 桃江县| 松桃| 莒南县| 湾仔区| 平南县| 庄河市| 泽库县| 沅陵县| 江门市| 清镇市| 镇安县| 博罗县| 仲巴县| 克什克腾旗| 龙游县| 武川县| 沁阳市| 尉氏县| 喀喇沁旗| 津南区| 铜川市| 巩义市| 波密县| 延长县| 黎城县|