找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computers and Mathematics; Erich Kaltofen,Stephen M. Watt Conference proceedings 1989 Springer-Verlag New York Inc. 1989 Permutation.algeb

[復(fù)制鏈接]
樓主: 債務(wù)人
11#
發(fā)表于 2025-3-23 10:13:57 | 只看該作者
12#
發(fā)表于 2025-3-23 17:32:03 | 只看該作者
13#
發(fā)表于 2025-3-23 21:55:33 | 只看該作者
Efficient Reduction of Quadratic Formseful in factorization of large integers. For many applications it is important to be able to recognize when two quadratic forms are equivalent, so it is useful to be able to reduce these quadratic forms to a canonical representation..For applications in factorization, the quadratic forms used have l
14#
發(fā)表于 2025-3-24 00:54:45 | 只看該作者
A Story About Computing with Roots of Unityw how we obtained new unexpected results trough computer algebra experiments. This was the direct result of computing in the ring of polynomials modulo the cyclotomic polynomial, instead of computing with roots of unity.
15#
發(fā)表于 2025-3-24 04:45:26 | 只看該作者
16#
發(fā)表于 2025-3-24 07:07:08 | 只看該作者
http://image.papertrans.cn/c/image/234651.jpg
17#
發(fā)表于 2025-3-24 13:23:19 | 只看該作者
https://doi.org/10.1007/978-1-4020-6558-3lgebra can be solved. The approach follows Buchberger’s approach for computing a Grobner basis for a polynomial ideal and is based on rewriting concepts. A canonical basis produced by the completion procedure shares many properties of a Gr?bner basis such as reducing an element of a .-subalgebra to
18#
發(fā)表于 2025-3-24 17:06:12 | 只看該作者
19#
發(fā)表于 2025-3-24 20:20:32 | 只看該作者
Health, Disease, and Productivityn is an element of a permutation group . specified by a set of generators. Sims [8] developed an elegant solution to this problem. His method relies on the construction of an alternative generating set for . known as a . which can be easily used to test membership of an arbitrary permutation in .. T
20#
發(fā)表于 2025-3-24 23:39:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 14:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
怀安县| 贵南县| 德钦县| 兴和县| 盐山县| 本溪市| 监利县| 石城县| 克什克腾旗| 滦南县| 广东省| 曲沃县| 巴东县| 台南市| 鹰潭市| 汕尾市| 美姑县| 新宾| 胶州市| 同仁县| 怀柔区| 社旗县| 六盘水市| 五大连池市| 沛县| 镇雄县| 平顶山市| 木里| 富锦市| 廉江市| 洛南县| 容城县| 芷江| 读书| 北辰区| 枞阳县| 如皋市| 屯门区| 阿图什市| 漯河市| 营山县|