找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer-Assisted and Robotic Endoscopy; Third International Terry Peters,Guang-Zhong Yang,Jonathan McLeod Conference proceedings 2017 Spr

[復制鏈接]
查看: 29954|回復: 49
樓主
發(fā)表于 2025-3-21 16:27:26 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Computer-Assisted and Robotic Endoscopy
副標題Third International
編輯Terry Peters,Guang-Zhong Yang,Jonathan McLeod
視頻videohttp://file.papertrans.cn/235/234468/234468.mp4
概述Includes supplementary material:
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Computer-Assisted and Robotic Endoscopy; Third International  Terry Peters,Guang-Zhong Yang,Jonathan McLeod Conference proceedings 2017 Spr
描述.This book constitutes the thoroughly refereed post-conference proceedings of the Third International Workshop on Computer Assisted and Robotic Endoscopy, CARE 2016, held in conjunction with MICCAI 2016, in Athens, Greece, in October 2016.. .The 11 revised full papers were carefully selected out of 13 initial submissions. The papers are organized on topical secttion?such as computer vision, graphics, robotics, medical imaging, external tracking systems, medical device controls systems, information processing techniques, endoscopy planning and simulation..
出版日期Conference proceedings 2017
關鍵詞augmented reality; automated diagnosis; computer vision; medical imaging; surgical tracking and navigati
版次1
doihttps://doi.org/10.1007/978-3-319-54057-3
isbn_softcover978-3-319-54056-6
isbn_ebook978-3-319-54057-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer International Publishing AG 2017
The information of publication is updating

書目名稱Computer-Assisted and Robotic Endoscopy影響因子(影響力)




書目名稱Computer-Assisted and Robotic Endoscopy影響因子(影響力)學科排名




書目名稱Computer-Assisted and Robotic Endoscopy網(wǎng)絡公開度




書目名稱Computer-Assisted and Robotic Endoscopy網(wǎng)絡公開度學科排名




書目名稱Computer-Assisted and Robotic Endoscopy被引頻次




書目名稱Computer-Assisted and Robotic Endoscopy被引頻次學科排名




書目名稱Computer-Assisted and Robotic Endoscopy年度引用




書目名稱Computer-Assisted and Robotic Endoscopy年度引用學科排名




書目名稱Computer-Assisted and Robotic Endoscopy讀者反饋




書目名稱Computer-Assisted and Robotic Endoscopy讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:56:53 | 只看該作者
The European Community and ASEAN,acy according to overlap size. In contrast to the conventional mosaicking approach, the proposed approach can produce panoramic image even in the case of 0% inter-cameras overlap. Additionally, the proposed approach is fast enough for clinical use.
板凳
發(fā)表于 2025-3-22 04:13:38 | 只看該作者
地板
發(fā)表于 2025-3-22 04:48:08 | 只看該作者
Toussaint Houeninvo,Philippe Sèdédjiution to extend ORBSLAM to be able to reconstruct a semi-dense map of soft organs. Experimental results on in-vivo pigs, shows a robust endoscope tracking even with organs deformations and partial instrument occlusions. It also shows the reconstruction density, and accuracy against ground truth surface obtained from CT.
5#
發(fā)表于 2025-3-22 10:19:25 | 只看該作者
Preoperative Diagnostic Procedures,y deep learning, achieves a balanced accuracy of 89.6% on a real clinical dataset, outperforming the (non-real-time) state of the art by 3.8% points. The latter, a combination of deep learning with optical flow tracking, yields an average balanced accuracy of 78.2% across all the validated datasets.
6#
發(fā)表于 2025-3-22 14:57:15 | 只看該作者
7#
發(fā)表于 2025-3-22 19:02:30 | 只看該作者
8#
發(fā)表于 2025-3-22 22:35:00 | 只看該作者
9#
發(fā)表于 2025-3-23 03:03:39 | 只看該作者
ORBSLAM-Based Endoscope Tracking and 3D Reconstruction,ution to extend ORBSLAM to be able to reconstruct a semi-dense map of soft organs. Experimental results on in-vivo pigs, shows a robust endoscope tracking even with organs deformations and partial instrument occlusions. It also shows the reconstruction density, and accuracy against ground truth surface obtained from CT.
10#
發(fā)表于 2025-3-23 06:05:40 | 只看該作者
Real-Time Segmentation of Non-rigid Surgical Tools Based on Deep Learning and Tracking,y deep learning, achieves a balanced accuracy of 89.6% on a real clinical dataset, outperforming the (non-real-time) state of the art by 3.8% points. The latter, a combination of deep learning with optical flow tracking, yields an average balanced accuracy of 78.2% across all the validated datasets.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 09:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
赞皇县| 营山县| 邵东县| 磐石市| 桐城市| 剑河县| 红河县| 合阳县| 曲靖市| 郁南县| 新密市| 五河县| 涿州市| 若羌县| 天镇县| 彭水| 旬邑县| 仁怀市| 鄂托克前旗| 泗阳县| 仁布县| 广灵县| 鸡东县| 长寿区| 清苑县| 台安县| 连城县| 西林县| 石狮市| 苍溪县| 涞水县| 盘锦市| 秦皇岛市| 舟山市| 瑞金市| 东港市| 屏边| 运城市| 多伦县| 抚顺市| 雷波县|