找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer-Aided Design and Computer Graphics; 18th International C Shi-Min Hu,Yiyu Cai,Paul Rosin Conference proceedings 2024 The Editor(s)

[復(fù)制鏈接]
樓主: Waterproof
11#
發(fā)表于 2025-3-23 10:43:56 | 只看該作者
,Spatial-Temporal Consistency Constraints for?Chinese Sign Language Synthesis,, directly splicing or combining video clips may result in video jumping problems. To this end, this paper proposes a novel spatial-temporal consistency constraints (STCC) approach for sign synthesis, which enhances the authenticity and acceptability of the synthesized video by generating intermedia
12#
發(fā)表于 2025-3-23 17:46:27 | 只看該作者
,An Easy-to-Build Modular Robot Implementation of?Chain-Based Physical Transformation for?STEM Educalications in a variety of industries. In this paper, we presented EasySRRobot, a low-cost, easy-to-build self-reconfigurable modular robot, to realize the automatic transformation across different configurations, and overcomes the limitation of existing transformation methods requiring manual involv
13#
發(fā)表于 2025-3-23 20:55:36 | 只看該作者
14#
發(fā)表于 2025-3-24 01:40:08 | 只看該作者
,Color-Correlated Texture Synthesis for?Hybrid Indoor Scenes,e predicts theme color for each room using a GAN-based method, before generating texture maps using combinatorial optimization. We consider constraints on material selection, color correlation, and color palette matching. Our experiments show the pipeline’s ability to produce pleasing and harmonious
15#
發(fā)表于 2025-3-24 06:03:55 | 只看該作者
16#
發(fā)表于 2025-3-24 07:48:49 | 只看該作者
NeRF Synthesis with Shading Guidance,h only sparse views given. However, utilizing NeRF to reconstruct real-world scenes requires images from different viewpoints, which limits its practical application. This problem can be even more pronounced for large scenes. In this paper, we introduce a new task called NeRF synthesis that utilizes
17#
發(fā)表于 2025-3-24 12:29:19 | 只看該作者
,Multi-scale Hybrid Transformer Network with?Grouped Convolutional Embedding for?Automatic Cephalomee challenge of developing automatic cephalometric detection methods that are both precise and cost-effective for detecting as many landmarks as possible. Although current deep learning-based approaches have attained high accuracy, they have limitations in detecting landmarks that lack distinct textu
18#
發(fā)表于 2025-3-24 16:47:56 | 只看該作者
,ZDL: Zero-Shot Degradation Factor Learning for?Robust and?Efficient Image Enhancement,abeled training data and are limited by the data distribution and application scenarios. To address these limitations, inspired by Hadamard theory, we propose a Zero-shot Degradation Factor Learning (ZDL) for robust and efficient image enhancement, which also could be extended to various harsh scena
19#
發(fā)表于 2025-3-24 22:50:28 | 只看該作者
,Self-supervised Contrastive Feature Refinement for?Few-Shot Class-Incremental Learning,ard to capture the underlying patterns and traits of the few-shot classes. To meet the challenges, we propose a Self-supervised Contrastive Feature Refinement (SCFR) framework which tackles the FSCIL issue from three aspects. Firstly, we employ a self-supervised learning framework to make the networ
20#
發(fā)表于 2025-3-25 01:33:03 | 只看該作者
https://doi.org/10.1007/978-981-99-9666-73D vision; Bio-CAD and Nano-CAD; computer animation; deep learning for graphics; geometric modeling; geom
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 02:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
北宁市| 朝阳区| 玛多县| 陇南市| 阳春市| 吉首市| 拉孜县| 仁布县| 沅江市| 团风县| 罗山县| 乐陵市| 林西县| 侯马市| 京山县| 根河市| 宜君县| 南丰县| 武川县| 四子王旗| 道真| 蕉岭县| 阿巴嘎旗| 哈巴河县| 钦州市| 锡林浩特市| 平定县| 文昌市| 慈溪市| 祥云县| 定襄县| 金门县| 元阳县| 石嘴山市| 常熟市| 成武县| 潜江市| 陆河县| 郸城县| 开平市| 封开县|