找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer-Aided Design and Computer Graphics; 18th International C Shi-Min Hu,Yiyu Cai,Paul Rosin Conference proceedings 2024 The Editor(s)

[復(fù)制鏈接]
樓主: Waterproof
11#
發(fā)表于 2025-3-23 10:43:56 | 只看該作者
,Spatial-Temporal Consistency Constraints for?Chinese Sign Language Synthesis,, directly splicing or combining video clips may result in video jumping problems. To this end, this paper proposes a novel spatial-temporal consistency constraints (STCC) approach for sign synthesis, which enhances the authenticity and acceptability of the synthesized video by generating intermedia
12#
發(fā)表于 2025-3-23 17:46:27 | 只看該作者
,An Easy-to-Build Modular Robot Implementation of?Chain-Based Physical Transformation for?STEM Educalications in a variety of industries. In this paper, we presented EasySRRobot, a low-cost, easy-to-build self-reconfigurable modular robot, to realize the automatic transformation across different configurations, and overcomes the limitation of existing transformation methods requiring manual involv
13#
發(fā)表于 2025-3-23 20:55:36 | 只看該作者
14#
發(fā)表于 2025-3-24 01:40:08 | 只看該作者
,Color-Correlated Texture Synthesis for?Hybrid Indoor Scenes,e predicts theme color for each room using a GAN-based method, before generating texture maps using combinatorial optimization. We consider constraints on material selection, color correlation, and color palette matching. Our experiments show the pipeline’s ability to produce pleasing and harmonious
15#
發(fā)表于 2025-3-24 06:03:55 | 只看該作者
16#
發(fā)表于 2025-3-24 07:48:49 | 只看該作者
NeRF Synthesis with Shading Guidance,h only sparse views given. However, utilizing NeRF to reconstruct real-world scenes requires images from different viewpoints, which limits its practical application. This problem can be even more pronounced for large scenes. In this paper, we introduce a new task called NeRF synthesis that utilizes
17#
發(fā)表于 2025-3-24 12:29:19 | 只看該作者
,Multi-scale Hybrid Transformer Network with?Grouped Convolutional Embedding for?Automatic Cephalomee challenge of developing automatic cephalometric detection methods that are both precise and cost-effective for detecting as many landmarks as possible. Although current deep learning-based approaches have attained high accuracy, they have limitations in detecting landmarks that lack distinct textu
18#
發(fā)表于 2025-3-24 16:47:56 | 只看該作者
,ZDL: Zero-Shot Degradation Factor Learning for?Robust and?Efficient Image Enhancement,abeled training data and are limited by the data distribution and application scenarios. To address these limitations, inspired by Hadamard theory, we propose a Zero-shot Degradation Factor Learning (ZDL) for robust and efficient image enhancement, which also could be extended to various harsh scena
19#
發(fā)表于 2025-3-24 22:50:28 | 只看該作者
,Self-supervised Contrastive Feature Refinement for?Few-Shot Class-Incremental Learning,ard to capture the underlying patterns and traits of the few-shot classes. To meet the challenges, we propose a Self-supervised Contrastive Feature Refinement (SCFR) framework which tackles the FSCIL issue from three aspects. Firstly, we employ a self-supervised learning framework to make the networ
20#
發(fā)表于 2025-3-25 01:33:03 | 只看該作者
https://doi.org/10.1007/978-981-99-9666-73D vision; Bio-CAD and Nano-CAD; computer animation; deep learning for graphics; geometric modeling; geom
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 02:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
华亭县| 水富县| 上林县| 大丰市| 贵德县| 通海县| 淮南市| 仙桃市| 曲靖市| 偏关县| 凤城市| 呼图壁县| 合作市| 眉山市| 阳江市| 淮滨县| 青岛市| 尚义县| 东乡| 青浦区| 通江县| 建阳市| 隆林| 兴义市| 喀喇沁旗| 潢川县| 莱阳市| 应城市| 澄江县| 重庆市| 望江县| 华坪县| 长寿区| 龙川县| 长宁区| 宝兴县| 峨眉山市| 平武县| 基隆市| 西贡区| 内江市|