找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2022 Workshops; Tel Aviv, Israel, Oc Leonid Karlinsky,Tomer Michaeli,Ko Nishino Conference proceedings 2023 The Edit

[復(fù)制鏈接]
樓主: 代表
41#
發(fā)表于 2025-3-28 17:04:57 | 只看該作者
42#
發(fā)表于 2025-3-28 21:05:01 | 只看該作者
An Evaluation of?Self-supervised Pre-training for?Skin-Lesion Analysisetext tasks, self-supervision allows pre-training models on large amounts of pseudo-labels before fine-tuning them on the target task. In this work, we assess self-supervision for diagnosing skin lesions, comparing three self-supervised pipelines to a challenging supervised baseline, on five test da
43#
發(fā)表于 2025-3-29 02:58:19 | 只看該作者
Skin_Hair Dataset: Setting the?Benchmark for?Effective Hair Inpainting Methods for?Improving the?Imay hair, which makes interpreting them more challenging for clinicians and computer-aided diagnostic algorithms. Hence, automated artifact recognition and inpainting systems have the potential to aid the clinical workflow as well as serve as an preprocessing step in the automated classification of de
44#
發(fā)表于 2025-3-29 04:54:19 | 只看該作者
FairDisCo: Fairer AI in?Dermatology via?Disentanglement Contrastive Learninge lesions on darker skin types are usually underrepresented and have lower diagnosis accuracy, receives little attention. In this paper, we propose FairDisCo, a disentanglement deep learning framework with contrastive learning that utilizes an additional network branch to remove sensitive attributes
45#
發(fā)表于 2025-3-29 10:40:44 | 只看該作者
46#
發(fā)表于 2025-3-29 13:59:43 | 只看該作者
47#
發(fā)表于 2025-3-29 19:34:19 | 只看該作者
48#
發(fā)表于 2025-3-29 23:16:08 | 只看該作者
49#
發(fā)表于 2025-3-30 02:35:15 | 只看該作者
European Demographic Monographsction strategy to boost the learning of motion features in video contrastive learning. The proposed method, dubbed .tion-focused .ruple Construction (MoQuad), augments the instance discrimination by meticulously disturbing the appearance and motion of both the positive and negative samples to create
50#
發(fā)表于 2025-3-30 04:18:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 18:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鄂托克前旗| 吉木萨尔县| 淄博市| 滨海县| 同仁县| 沭阳县| 和硕县| 湾仔区| 义乌市| 象州县| 德清县| 常州市| 桂阳县| 海口市| 汨罗市| 连云港市| 延安市| 留坝县| 江陵县| 奉化市| 门头沟区| 丹寨县| 长葛市| 河西区| 沈阳市| 会泽县| 泰顺县| 夏津县| 大连市| 鄱阳县| 金阳县| 望奎县| 工布江达县| 崇信县| 淮北市| 柘荣县| 新安县| 平阳县| 左贡县| 吉木萨尔县| 乌拉特前旗|