找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2022 Workshops; Tel Aviv, Israel, Oc Leonid Karlinsky,Tomer Michaeli,Ko Nishino Conference proceedings 2023 The Edit

[復(fù)制鏈接]
樓主: 喜悅
31#
發(fā)表于 2025-3-26 23:15:59 | 只看該作者
CenDerNet: Center and?Curvature Representations for?Render-and-Compare 6D Pose Estimationers; Third, 6D object poses are estimated using 3D centers and curvature heatmaps. By jointly optimizing poses across views using a render-and-compare approach, our method naturally handles occlusions and object symmetries. We show that CenDerNet outperforms previous methods on two industry-relevant datasets: DIMO and T-LESS.
32#
發(fā)表于 2025-3-27 02:54:08 | 只看該作者
33#
發(fā)表于 2025-3-27 06:45:21 | 只看該作者
YORO - Lightweight End to?End Visual Groundingan object referred via natural language. Unlike the recent trend in the literature of using multi-stage approaches that sacrifice speed for accuracy, YORO seeks a better trade-off between speed an accuracy by embracing a single-stage design, without CNN backbone. YORO consumes natural language queri
34#
發(fā)表于 2025-3-27 11:32:22 | 只看該作者
Localization Uncertainty Estimation for?Anchor-Free Object Detectionete data, it is desirable for object detectors to take the localization uncertainty into account. However, there are several limitations of the existing uncertainty estimation methods for anchor-based object detection. 1) They model the uncertainty of the heterogeneous object properties with differe
35#
發(fā)表于 2025-3-27 15:32:46 | 只看該作者
Variational Depth Networks: Uncertainty-Aware Monocular Self-supervised Depth Estimationthey are susceptible to input ambiguities and it is therefore important to express the corresponding depth uncertainty. While there are a few truly monocular and self-supervised methods modelling uncertainty, none correlates well with errors in depth. To this end we present Variational Depth Network
36#
發(fā)表于 2025-3-27 21:31:31 | 只看該作者
Unsupervised Joint Image Transfer and?Uncertainty Quantification Using Patch Invariant Networksundant. To ensure a structure-preserving mapping from the input to the target domain, existing methods for unpaired image transfer are commonly based on cycle-consistency, causing additional computational resources and instability due to the learning of an inverse mapping. This paper presents a nove
37#
發(fā)表于 2025-3-27 22:22:44 | 只看該作者
38#
發(fā)表于 2025-3-28 02:10:24 | 只看該作者
39#
發(fā)表于 2025-3-28 08:43:45 | 只看該作者
Trans6D: Transformer-Based 6D Object Pose Estimation and?Refinementl network (CNN)-based methods have made remarkable progress, they are not efficient in capturing global dependencies and often suffer from information loss due to downsampling operations. To extract robust feature representation, we propose a Transformer-based 6D object pose estimation approach (Tra
40#
發(fā)表于 2025-3-28 11:14:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 05:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
邳州市| 中西区| 托里县| 庄河市| 临湘市| 竹北市| 若羌县| 安塞县| 竹北市| 芜湖市| 视频| 清水县| 衡山县| 静海县| 化隆| 崇阳县| 兰州市| 临海市| 拉孜县| 汪清县| 平南县| 宜兰县| 永康市| 开封市| 彭山县| 侯马市| 罗平县| 康乐县| 高邮市| 东乡县| 深圳市| 云南省| 博罗县| 镇远县| 墨竹工卡县| 新宁县| 汝州市| 高密市| 寿宁县| 界首市| 迁安市|