找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2022; 17th European Confer Shai Avidan,Gabriel Brostow,Tal Hassner Conference proceedings 2022 The Editor(s) (if app

[復(fù)制鏈接]
樓主: Alacrity
41#
發(fā)表于 2025-3-28 15:25:59 | 只看該作者
42#
發(fā)表于 2025-3-28 22:44:12 | 只看該作者
43#
發(fā)表于 2025-3-29 00:17:37 | 只看該作者
,tSF: Transformer-Based Semantic Filter for?Few-Shot Learning,een (novel) labeled samples. Most feature embedding modules in recent FSL methods are specially designed for corresponding learning tasks (e.g., classification, segmentation, and object detection), which limits the . of embedding features. To this end, we propose a light and universal module named t
44#
發(fā)表于 2025-3-29 05:53:51 | 只看該作者
,Adversarial Feature Augmentation for?Cross-domain Few-Shot Classification,sting methods based on meta-learning predict novel-class labels for (target domain) testing tasks via meta knowledge learned from (source domain) training tasks of base classes. However, most existing works may fail to generalize to novel classes due to the probably large domain discrepancy across d
45#
發(fā)表于 2025-3-29 10:42:16 | 只看該作者
,Constructing Balance from?Imbalance for?Long-Tailed Image Recognition,ail) classes severely skews the data-driven deep neural networks. Previous methods tackle with data imbalance from the viewpoints of data distribution, feature space, and model design, etc. In this work, instead of directly learning a recognition model, we suggest confronting the bottleneck of head-
46#
發(fā)表于 2025-3-29 12:08:08 | 只看該作者
,On Multi-Domain Long-Tailed Recognition, Imbalanced Domain Generalization and?Beyond,om the same data distribution. However, natural data can originate from distinct domains, where a minority class in one domain could have abundant instances from other domains. We formalize the task of Multi-Domain Long-Tailed Recognition (MDLT), which learns from multi-domain imbalanced data, addre
47#
發(fā)表于 2025-3-29 17:02:08 | 只看該作者
48#
發(fā)表于 2025-3-29 20:43:38 | 只看該作者
49#
發(fā)表于 2025-3-30 02:28:08 | 只看該作者
,Exploring Hierarchical Graph Representation for?Large-Scale Zero-Shot Image Classification,ands of categories as in the ImageNet-21K benchmark. At this scale, especially with many fine-grained categories included in ImageNet-21K, it is critical to learn quality visual semantic representations that are discriminative enough to recognize unseen classes and distinguish them from seen ones. W
50#
發(fā)表于 2025-3-30 06:22:02 | 只看該作者
Doubly Deformable Aggregation of Covariance Matrices for Few-Shot Segmentation, task, the main challenge is how to accurately measure the semantic correspondence between the support and query samples with limited training data. To address this problem, we propose to aggregate the learnable covariance matrices with a deformable 4D Transformer to effectively predict the segmenta
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 23:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巴彦淖尔市| 皮山县| 宝坻区| 孙吴县| 赤峰市| 叶城县| 宜君县| 闵行区| 延吉市| 大关县| 南康市| 阜宁县| 元朗区| 措勤县| 沅陵县| 玉林市| 威海市| 新野县| 新安县| 响水县| 高唐县| 甘孜| 灵武市| 双桥区| 余姚市| 纳雍县| 莒南县| 界首市| 平湖市| 株洲县| 靖宇县| 马龙县| 江源县| 沂南县| 吉首市| 合江县| 阿图什市| 苍梧县| 元江| 迭部县| 巢湖市|