找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2022; 17th European Confer Shai Avidan,Gabriel Brostow,Tal Hassner Conference proceedings 2022 The Editor(s) (if app

[復(fù)制鏈接]
樓主: 脾氣好
21#
發(fā)表于 2025-3-25 06:08:58 | 只看該作者
22#
發(fā)表于 2025-3-25 10:04:41 | 只看該作者
,Few-Shot End-to-End Object Detection via?Constantly Concentrated Encoding Across Heads,oposals to facilitate the adaptation at lower heads. Extensive experimental results show that our model brought clear gain on benchmarks. Detailed ablation studies are provided to justify the selection of each component.
23#
發(fā)表于 2025-3-25 12:22:22 | 只看該作者
,Implicit Neural Representations for?Image Compression,rtion performance. Our contributions to source compression with INRs vastly outperform prior work. We show that our INR-based compression algorithm, meta-learning combined with SIREN and positional encodings, outperforms JPEG2000 and Rate-Distortion Autoencoders on Kodak with 2x reduced dimensionali
24#
發(fā)表于 2025-3-25 17:28:48 | 只看該作者
25#
發(fā)表于 2025-3-25 23:18:09 | 只看該作者
26#
發(fā)表于 2025-3-26 02:30:44 | 只看該作者
,Learning Ego 3D Representation as?Ray Tracing,presentation from 2D images without any depth supervision, and with the built-in geometry structure consistent .?BEV. Despite its simplicity and versatility, extensive experiments on standard BEV visual tasks (., camera-based 3D object detection and BEV segmentation) show that our model outperforms
27#
發(fā)表于 2025-3-26 05:06:03 | 只看該作者
28#
發(fā)表于 2025-3-26 10:42:01 | 只看該作者
,Hierarchically Self-supervised Transformer for?Human Skeleton Representation Learning, covering three skeleton-based downstream tasks including action recognition, action detection, and motion prediction. Under both supervised and semi-supervised evaluation protocols, our method achieves the state-of-the-art performance. Additionally, we demonstrate that the prior knowledge learned b
29#
發(fā)表于 2025-3-26 13:19:34 | 只看該作者
30#
發(fā)表于 2025-3-26 16:52:42 | 只看該作者
,Balancing Stability and?Plasticity Through Advanced Null Space in?Continual Learning,ove the performance of the current task. Finally, we theoretically find that null space plays a key role in plasticity and stability, respectively. Experimental results show that the proposed method can achieve better performance compared to state-of-the-art continual learning approaches.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 20:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
始兴县| 陇南市| 泸定县| 涞源县| 广宁县| 高雄市| 商城县| 乐山市| 宜黄县| 彩票| 正镶白旗| 阿拉善右旗| 叶城县| 陇川县| 昭觉县| 锡林浩特市| 阜南县| 保定市| 荥经县| 海阳市| 和田市| 宝应县| 从化市| 西乌| 涞水县| 永年县| 丹东市| 漳州市| 万盛区| 榆社县| 建宁县| 平阳县| 泰和县| 桐乡市| 正镶白旗| 龙泉市| 辛集市| 富裕县| 芮城县| 灵寿县| 西峡县|