找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2022; 17th European Confer Shai Avidan,Gabriel Brostow,Tal Hassner Conference proceedings 2022 The Editor(s) (if app

[復(fù)制鏈接]
樓主: 脾氣好
21#
發(fā)表于 2025-3-25 06:08:58 | 只看該作者
22#
發(fā)表于 2025-3-25 10:04:41 | 只看該作者
,Few-Shot End-to-End Object Detection via?Constantly Concentrated Encoding Across Heads,oposals to facilitate the adaptation at lower heads. Extensive experimental results show that our model brought clear gain on benchmarks. Detailed ablation studies are provided to justify the selection of each component.
23#
發(fā)表于 2025-3-25 12:22:22 | 只看該作者
,Implicit Neural Representations for?Image Compression,rtion performance. Our contributions to source compression with INRs vastly outperform prior work. We show that our INR-based compression algorithm, meta-learning combined with SIREN and positional encodings, outperforms JPEG2000 and Rate-Distortion Autoencoders on Kodak with 2x reduced dimensionali
24#
發(fā)表于 2025-3-25 17:28:48 | 只看該作者
25#
發(fā)表于 2025-3-25 23:18:09 | 只看該作者
26#
發(fā)表于 2025-3-26 02:30:44 | 只看該作者
,Learning Ego 3D Representation as?Ray Tracing,presentation from 2D images without any depth supervision, and with the built-in geometry structure consistent .?BEV. Despite its simplicity and versatility, extensive experiments on standard BEV visual tasks (., camera-based 3D object detection and BEV segmentation) show that our model outperforms
27#
發(fā)表于 2025-3-26 05:06:03 | 只看該作者
28#
發(fā)表于 2025-3-26 10:42:01 | 只看該作者
,Hierarchically Self-supervised Transformer for?Human Skeleton Representation Learning, covering three skeleton-based downstream tasks including action recognition, action detection, and motion prediction. Under both supervised and semi-supervised evaluation protocols, our method achieves the state-of-the-art performance. Additionally, we demonstrate that the prior knowledge learned b
29#
發(fā)表于 2025-3-26 13:19:34 | 只看該作者
30#
發(fā)表于 2025-3-26 16:52:42 | 只看該作者
,Balancing Stability and?Plasticity Through Advanced Null Space in?Continual Learning,ove the performance of the current task. Finally, we theoretically find that null space plays a key role in plasticity and stability, respectively. Experimental results show that the proposed method can achieve better performance compared to state-of-the-art continual learning approaches.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 20:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
商河县| 建昌县| 康保县| 盱眙县| 乌恰县| 青海省| 资兴市| 黔东| 栾川县| 西林县| 绥滨县| 大新县| 涞源县| 商水县| 甘洛县| 衢州市| 南雄市| 淮阳县| 凌源市| 德庆县| 抚远县| 资阳市| 衡东县| 永和县| 湘乡市| 长海县| 习水县| 泰来县| 封丘县| 两当县| 沅陵县| 卓尼县| 闵行区| 揭东县| 永平县| 贺兰县| 霍城县| 淮北市| 大石桥市| 克山县| 唐海县|