找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2022; 17th European Confer Shai Avidan,Gabriel Brostow,Tal Hassner Conference proceedings 2022 The Editor(s) (if app

[復(fù)制鏈接]
樓主: Deleterious
11#
發(fā)表于 2025-3-23 10:48:59 | 只看該作者
12#
發(fā)表于 2025-3-23 16:59:02 | 只看該作者
,SSBNet: Improving Visual Recognition Efficiency by?Adaptive Sampling,SSB-ResNet-RS-200 achieved 82.6% accuracy on ImageNet dataset, which is 0.6% higher than the baseline ResNet-RS-152 with a similar complexity. Visualization shows the advantage of SSBNet in allowing different layers to focus on different positions, and ablation studies further validate the advantage
13#
發(fā)表于 2025-3-23 18:38:03 | 只看該作者
,Filter Pruning via?Feature Discrimination in?Deep Neural Networks, our method first selects relatively redundant layers by hard and soft changes of the network output, and then prunes only at these layers. The whole process dynamically adjusts redundant layers through iterations. Extensive experiments conducted on CIFAR-10/100 and ImageNet show that our method ach
14#
發(fā)表于 2025-3-24 00:26:44 | 只看該作者
15#
發(fā)表于 2025-3-24 05:58:08 | 只看該作者
,Interpretations Steered Network Pruning via?Amortized Inferred Saliency Maps,roducing a selector model that predicts real-time smooth saliency masks for pruned models. We parameterize the distribution of explanatory masks by Radial Basis Function (RBF)-like functions to incorporate geometric prior of natural images in our selector model’s inductive bias. Thus, we can obtain
16#
發(fā)表于 2025-3-24 07:38:29 | 只看該作者
The Reforms: Experiences and Failuresce values by regulating the contributions of individual examples in the parameter update of the network. Further, our algorithm avoids redundant labeling by promoting diversity in batch selection through propagating the confidence of each newly labeled example to the entire dataset. Experiments invo
17#
發(fā)表于 2025-3-24 11:39:32 | 只看該作者
18#
發(fā)表于 2025-3-24 16:26:01 | 只看該作者
International Economic Relationsependencies without self-attention. Extensive experiments demonstrate that our adaptive weight mixing is more efficient and effective than previous weight generation methods and our AMixer can achieve a better trade-off between accuracy and complexity than vision Transformers and MLP models on both
19#
發(fā)表于 2025-3-24 23:03:46 | 只看該作者
Reintegrating the World Economy pretrained model with computation and parameter constraints. Comprehensive experiments demonstrate the efficacy of TinyViT. It achieves a top-1 accuracy of 84.8% on ImageNet-1k with only 21M parameters, being comparable to Swin-B pretrained on ImageNet-21k while using 4.2 times fewer parameters. Mo
20#
發(fā)表于 2025-3-25 02:22:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 07:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
屯门区| 鹤岗市| 福贡县| 邵东县| 织金县| 盐津县| 汤阴县| 高唐县| 鹤岗市| 博兴县| 美姑县| 宁强县| 广河县| 白沙| 高碑店市| 祥云县| 庆阳市| 大兴区| 乌兰浩特市| 高青县| 武定县| 南华县| 黑水县| 新宁县| 林甸县| 花莲县| 潜江市| 临沂市| 隆回县| 鄂尔多斯市| 西吉县| 镇康县| 莱州市| 三门峡市| 吉水县| 泰兴市| 三亚市| 桐柏县| 兴山县| 三台县| 教育|