找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2022; 17th European Confer Shai Avidan,Gabriel Brostow,Tal Hassner Conference proceedings 2022 The Editor(s) (if app

[復(fù)制鏈接]
樓主: Deleterious
11#
發(fā)表于 2025-3-23 10:48:59 | 只看該作者
12#
發(fā)表于 2025-3-23 16:59:02 | 只看該作者
,SSBNet: Improving Visual Recognition Efficiency by?Adaptive Sampling,SSB-ResNet-RS-200 achieved 82.6% accuracy on ImageNet dataset, which is 0.6% higher than the baseline ResNet-RS-152 with a similar complexity. Visualization shows the advantage of SSBNet in allowing different layers to focus on different positions, and ablation studies further validate the advantage
13#
發(fā)表于 2025-3-23 18:38:03 | 只看該作者
,Filter Pruning via?Feature Discrimination in?Deep Neural Networks, our method first selects relatively redundant layers by hard and soft changes of the network output, and then prunes only at these layers. The whole process dynamically adjusts redundant layers through iterations. Extensive experiments conducted on CIFAR-10/100 and ImageNet show that our method ach
14#
發(fā)表于 2025-3-24 00:26:44 | 只看該作者
15#
發(fā)表于 2025-3-24 05:58:08 | 只看該作者
,Interpretations Steered Network Pruning via?Amortized Inferred Saliency Maps,roducing a selector model that predicts real-time smooth saliency masks for pruned models. We parameterize the distribution of explanatory masks by Radial Basis Function (RBF)-like functions to incorporate geometric prior of natural images in our selector model’s inductive bias. Thus, we can obtain
16#
發(fā)表于 2025-3-24 07:38:29 | 只看該作者
The Reforms: Experiences and Failuresce values by regulating the contributions of individual examples in the parameter update of the network. Further, our algorithm avoids redundant labeling by promoting diversity in batch selection through propagating the confidence of each newly labeled example to the entire dataset. Experiments invo
17#
發(fā)表于 2025-3-24 11:39:32 | 只看該作者
18#
發(fā)表于 2025-3-24 16:26:01 | 只看該作者
International Economic Relationsependencies without self-attention. Extensive experiments demonstrate that our adaptive weight mixing is more efficient and effective than previous weight generation methods and our AMixer can achieve a better trade-off between accuracy and complexity than vision Transformers and MLP models on both
19#
發(fā)表于 2025-3-24 23:03:46 | 只看該作者
Reintegrating the World Economy pretrained model with computation and parameter constraints. Comprehensive experiments demonstrate the efficacy of TinyViT. It achieves a top-1 accuracy of 84.8% on ImageNet-1k with only 21M parameters, being comparable to Swin-B pretrained on ImageNet-21k while using 4.2 times fewer parameters. Mo
20#
發(fā)表于 2025-3-25 02:22:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 09:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
亚东县| 垣曲县| 濮阳市| 蒙自县| 堆龙德庆县| 通渭县| 汽车| 南充市| 郑州市| 诏安县| 西充县| 平远县| 临澧县| 珠海市| 崇义县| 洛扎县| 井冈山市| 青河县| 岑巩县| 南丰县| 荔波县| 东辽县| 长葛市| 东方市| 板桥市| 盐城市| 余江县| 开平市| 股票| 闵行区| 寿宁县| 大关县| 太原市| 大新县| 略阳县| 斗六市| 财经| 琼海市| 龙泉市| 浦东新区| 鹤岗市|