找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2022; 17th European Confer Shai Avidan,Gabriel Brostow,Tal Hassner Conference proceedings 2022 The Editor(s) (if app

[復制鏈接]
樓主: COAX
41#
發(fā)表于 2025-3-28 18:12:45 | 只看該作者
42#
發(fā)表于 2025-3-28 22:37:12 | 只看該作者
J. Harvey B.Sc. (Econ.), Dip. Ed. (Oxford)ied unknown classes. However, it cannot distinguish unknown instances as multiple unknown classes. In this work, we propose a novel OWOD problem called Unknown-Classified Open World Object Detection (UC-OWOD). UC-OWOD aims to detect unknown instances and classify them into different unknown classes.
43#
發(fā)表于 2025-3-29 01:41:14 | 只看該作者
Alessandro Cigno,Furio C. Rosatipresent its knowledge: as a global 3D grid of features and an array of view-specific 2D grids. We progressively exchange information between the two with a dedicated bidirectional attention mechanism. We exploit knowledge about the image formation process to significantly sparsify the attention weig
44#
發(fā)表于 2025-3-29 03:07:55 | 只看該作者
45#
發(fā)表于 2025-3-29 08:47:34 | 只看該作者
Alain de Crombrugghe,Louis Geversource-consuming, and depending only on supervised learning limits the applicability of trained models. Self-supervised training strategies can alleviate these issues by learning a general point cloud backbone model for downstream 3D vision tasks. Against this backdrop, we show the relationship betwe
46#
發(fā)表于 2025-3-29 14:30:48 | 只看該作者
47#
發(fā)表于 2025-3-29 19:31:42 | 只看該作者
48#
發(fā)表于 2025-3-29 21:49:28 | 只看該作者
49#
發(fā)表于 2025-3-30 00:16:31 | 只看該作者
L. V. Kantorovich,V. L. Makarov, existing efforts mainly focus on improving matching accuracy while ignoring its efficiency, which is crucial for real-world applications. In this paper, we propose an efficient structure named Efficient Correspondence Transformer (.) by finding correspondences in a coarse-to-fine manner, which sig
50#
發(fā)表于 2025-3-30 07:04:02 | 只看該作者
https://doi.org/10.1007/978-3-031-20080-9Computer Science; Informatics; Conference Proceedings; Research; Applications
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 07:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
南投市| 舞钢市| 武邑县| 塔河县| 钟祥市| 楚雄市| 溧水县| 香港 | 巩义市| 克山县| 南岸区| 锡林浩特市| 绥德县| 小金县| 五莲县| 黔西| 清水河县| 江安县| 新乐市| 乌拉特中旗| 安康市| 浦县| 闵行区| 栖霞市| 堆龙德庆县| 沾益县| 安龙县| 阜康市| 尼玛县| 平昌县| 德保县| 沙河市| 弥勒县| 玛曲县| 平湖市| 韶山市| 新建县| 灵山县| 溆浦县| 股票| 彭阳县|