找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2022; 17th European Confer Shai Avidan,Gabriel Brostow,Tal Hassner Conference proceedings 2022 The Editor(s) (if app

[復(fù)制鏈接]
樓主: Falter
51#
發(fā)表于 2025-3-30 10:12:12 | 只看該作者
52#
發(fā)表于 2025-3-30 12:45:33 | 只看該作者
Massimo G. Colombo,Marco Delmastroose an efficient Attention Guided Adversarial Training mechanism. Specifically, relying on the specialty of self-attention, we actively remove certain patch embeddings of each layer with an attention-guided dropping strategy during adversarial training. The slimmed self-attention modules accelerate
53#
發(fā)表于 2025-3-30 18:02:19 | 只看該作者
AU-Aware 3D Face Reconstruction through Personalized AU-Specific Blendshape Learning,basis coefficients such that they are semantically mapped to each AU. Our AU-aware 3D reconstruction model generates accurate 3D expressions composed by semantically meaningful AU motion components. Furthermore, the output of the model can be directly applied to generate 3D AU occurrence predictions
54#
發(fā)表于 2025-3-30 21:55:44 | 只看該作者
55#
發(fā)表于 2025-3-31 04:17:20 | 只看該作者
56#
發(fā)表于 2025-3-31 08:58:54 | 只看該作者
,Pre-training Strategies and?Datasets for?Facial Representation Learning,ncluding their size and quality (labelled, unlabelled or even uncurated). (d) To draw our conclusions, we conducted a very large number of experiments. Our main two findings are: (1) Unsupervised pre-training on completely in-the-wild, uncurated data provides consistent and, in some cases, significa
57#
發(fā)表于 2025-3-31 09:14:05 | 只看該作者
,Look Both?Ways: Self-supervising Driver Gaze Estimation and?Road Scene Saliency,framework to enforce this consistency, allowing the gaze model to supervise the scene saliency model, and vice versa. We implement a prototype of our method and test it with our dataset, to show that compared to a supervised approach it can yield better gaze estimation and scene saliency estimation
58#
發(fā)表于 2025-3-31 17:25:14 | 只看該作者
59#
發(fā)表于 2025-3-31 18:12:49 | 只看該作者
,3D Face Reconstruction with?Dense Landmarks, facial performance capture in both monocular and multi-view scenarios. Finally, our method is highly efficient: we can predict dense landmarks and fit our 3D face model at over 150FPS on a single CPU thread. Please see our website: ..
60#
發(fā)表于 2025-4-1 00:12:42 | 只看該作者
,Emotion-aware Multi-view Contrastive Learning for?Facial Emotion Recognition,entation in the polar coordinate, i.e., the Arousal-Valence space. Experimental results show that the proposed method improves the PCC/CCC performance by more than 10% compared to the runner-up method in the wild datasets and is also qualitatively better in terms of neural activation map. Code is av
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 16:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
白河县| 麻栗坡县| 高州市| 三门县| 宿迁市| 德惠市| 海盐县| 丰台区| 儋州市| 临澧县| 锡林浩特市| 汕头市| 阿拉善盟| 玉屏| 丹江口市| 岳普湖县| 乌鲁木齐县| 天全县| 兰坪| 迁西县| 栖霞市| 曲麻莱县| 莱芜市| 顺义区| 东光县| 龙泉市| 普兰店市| 宁晋县| 宣武区| 包头市| 南通市| 安化县| 阜南县| 乳山市| 苏州市| 泸州市| 平凉市| 牟定县| 边坝县| 甘南县| 秦安县|