找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2022; 17th European Confer Shai Avidan,Gabriel Brostow,Tal Hassner Conference proceedings 2022 The Editor(s) (if app

[復(fù)制鏈接]
樓主: Falter
51#
發(fā)表于 2025-3-30 10:12:12 | 只看該作者
52#
發(fā)表于 2025-3-30 12:45:33 | 只看該作者
Massimo G. Colombo,Marco Delmastroose an efficient Attention Guided Adversarial Training mechanism. Specifically, relying on the specialty of self-attention, we actively remove certain patch embeddings of each layer with an attention-guided dropping strategy during adversarial training. The slimmed self-attention modules accelerate
53#
發(fā)表于 2025-3-30 18:02:19 | 只看該作者
AU-Aware 3D Face Reconstruction through Personalized AU-Specific Blendshape Learning,basis coefficients such that they are semantically mapped to each AU. Our AU-aware 3D reconstruction model generates accurate 3D expressions composed by semantically meaningful AU motion components. Furthermore, the output of the model can be directly applied to generate 3D AU occurrence predictions
54#
發(fā)表于 2025-3-30 21:55:44 | 只看該作者
55#
發(fā)表于 2025-3-31 04:17:20 | 只看該作者
56#
發(fā)表于 2025-3-31 08:58:54 | 只看該作者
,Pre-training Strategies and?Datasets for?Facial Representation Learning,ncluding their size and quality (labelled, unlabelled or even uncurated). (d) To draw our conclusions, we conducted a very large number of experiments. Our main two findings are: (1) Unsupervised pre-training on completely in-the-wild, uncurated data provides consistent and, in some cases, significa
57#
發(fā)表于 2025-3-31 09:14:05 | 只看該作者
,Look Both?Ways: Self-supervising Driver Gaze Estimation and?Road Scene Saliency,framework to enforce this consistency, allowing the gaze model to supervise the scene saliency model, and vice versa. We implement a prototype of our method and test it with our dataset, to show that compared to a supervised approach it can yield better gaze estimation and scene saliency estimation
58#
發(fā)表于 2025-3-31 17:25:14 | 只看該作者
59#
發(fā)表于 2025-3-31 18:12:49 | 只看該作者
,3D Face Reconstruction with?Dense Landmarks, facial performance capture in both monocular and multi-view scenarios. Finally, our method is highly efficient: we can predict dense landmarks and fit our 3D face model at over 150FPS on a single CPU thread. Please see our website: ..
60#
發(fā)表于 2025-4-1 00:12:42 | 只看該作者
,Emotion-aware Multi-view Contrastive Learning for?Facial Emotion Recognition,entation in the polar coordinate, i.e., the Arousal-Valence space. Experimental results show that the proposed method improves the PCC/CCC performance by more than 10% compared to the runner-up method in the wild datasets and is also qualitatively better in terms of neural activation map. Code is av
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 16:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昔阳县| 静宁县| 锦州市| 泰宁县| 界首市| 五原县| 福贡县| 海城市| 彭阳县| 桐乡市| 新竹县| 霍林郭勒市| 清河县| 白沙| 天门市| 仲巴县| 纳雍县| 商水县| 饶河县| 合作市| 凤台县| 石河子市| 陇川县| 天台县| 青海省| 鹿泉市| 浠水县| 宣化县| 舒兰市| 罗平县| 诸暨市| 攀枝花市| 鹤山市| 化隆| 扎兰屯市| 天峨县| 炎陵县| 临夏市| 海兴县| 凌海市| 和林格尔县|