找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2022; 17th European Confer Shai Avidan,Gabriel Brostow,Tal Hassner Conference proceedings 2022 The Editor(s) (if app

[復(fù)制鏈接]
樓主: Falter
51#
發(fā)表于 2025-3-30 10:12:12 | 只看該作者
52#
發(fā)表于 2025-3-30 12:45:33 | 只看該作者
Massimo G. Colombo,Marco Delmastroose an efficient Attention Guided Adversarial Training mechanism. Specifically, relying on the specialty of self-attention, we actively remove certain patch embeddings of each layer with an attention-guided dropping strategy during adversarial training. The slimmed self-attention modules accelerate
53#
發(fā)表于 2025-3-30 18:02:19 | 只看該作者
AU-Aware 3D Face Reconstruction through Personalized AU-Specific Blendshape Learning,basis coefficients such that they are semantically mapped to each AU. Our AU-aware 3D reconstruction model generates accurate 3D expressions composed by semantically meaningful AU motion components. Furthermore, the output of the model can be directly applied to generate 3D AU occurrence predictions
54#
發(fā)表于 2025-3-30 21:55:44 | 只看該作者
55#
發(fā)表于 2025-3-31 04:17:20 | 只看該作者
56#
發(fā)表于 2025-3-31 08:58:54 | 只看該作者
,Pre-training Strategies and?Datasets for?Facial Representation Learning,ncluding their size and quality (labelled, unlabelled or even uncurated). (d) To draw our conclusions, we conducted a very large number of experiments. Our main two findings are: (1) Unsupervised pre-training on completely in-the-wild, uncurated data provides consistent and, in some cases, significa
57#
發(fā)表于 2025-3-31 09:14:05 | 只看該作者
,Look Both?Ways: Self-supervising Driver Gaze Estimation and?Road Scene Saliency,framework to enforce this consistency, allowing the gaze model to supervise the scene saliency model, and vice versa. We implement a prototype of our method and test it with our dataset, to show that compared to a supervised approach it can yield better gaze estimation and scene saliency estimation
58#
發(fā)表于 2025-3-31 17:25:14 | 只看該作者
59#
發(fā)表于 2025-3-31 18:12:49 | 只看該作者
,3D Face Reconstruction with?Dense Landmarks, facial performance capture in both monocular and multi-view scenarios. Finally, our method is highly efficient: we can predict dense landmarks and fit our 3D face model at over 150FPS on a single CPU thread. Please see our website: ..
60#
發(fā)表于 2025-4-1 00:12:42 | 只看該作者
,Emotion-aware Multi-view Contrastive Learning for?Facial Emotion Recognition,entation in the polar coordinate, i.e., the Arousal-Valence space. Experimental results show that the proposed method improves the PCC/CCC performance by more than 10% compared to the runner-up method in the wild datasets and is also qualitatively better in terms of neural activation map. Code is av
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 20:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
海兴县| 无为县| 南昌县| 南部县| 青浦区| 千阳县| 济源市| 方正县| 张家川| 永平县| 建始县| 邳州市| 浙江省| 闽侯县| 濮阳县| 章丘市| 南溪县| 新民市| 札达县| 酒泉市| 洞头县| 霍城县| 伊春市| 阿荣旗| 文昌市| 嵊泗县| 苗栗市| 河池市| 永顺县| 壤塘县| 定西市| 芒康县| 阿荣旗| 乌拉特中旗| 太白县| 峨边| 文安县| 高邑县| 麻阳| 肥西县| 甘泉县|