找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2022; 17th European Confer Shai Avidan,Gabriel Brostow,Tal Hassner Conference proceedings 2022 The Editor(s) (if app

[復(fù)制鏈接]
樓主: Falter
51#
發(fā)表于 2025-3-30 10:12:12 | 只看該作者
52#
發(fā)表于 2025-3-30 12:45:33 | 只看該作者
Massimo G. Colombo,Marco Delmastroose an efficient Attention Guided Adversarial Training mechanism. Specifically, relying on the specialty of self-attention, we actively remove certain patch embeddings of each layer with an attention-guided dropping strategy during adversarial training. The slimmed self-attention modules accelerate
53#
發(fā)表于 2025-3-30 18:02:19 | 只看該作者
AU-Aware 3D Face Reconstruction through Personalized AU-Specific Blendshape Learning,basis coefficients such that they are semantically mapped to each AU. Our AU-aware 3D reconstruction model generates accurate 3D expressions composed by semantically meaningful AU motion components. Furthermore, the output of the model can be directly applied to generate 3D AU occurrence predictions
54#
發(fā)表于 2025-3-30 21:55:44 | 只看該作者
55#
發(fā)表于 2025-3-31 04:17:20 | 只看該作者
56#
發(fā)表于 2025-3-31 08:58:54 | 只看該作者
,Pre-training Strategies and?Datasets for?Facial Representation Learning,ncluding their size and quality (labelled, unlabelled or even uncurated). (d) To draw our conclusions, we conducted a very large number of experiments. Our main two findings are: (1) Unsupervised pre-training on completely in-the-wild, uncurated data provides consistent and, in some cases, significa
57#
發(fā)表于 2025-3-31 09:14:05 | 只看該作者
,Look Both?Ways: Self-supervising Driver Gaze Estimation and?Road Scene Saliency,framework to enforce this consistency, allowing the gaze model to supervise the scene saliency model, and vice versa. We implement a prototype of our method and test it with our dataset, to show that compared to a supervised approach it can yield better gaze estimation and scene saliency estimation
58#
發(fā)表于 2025-3-31 17:25:14 | 只看該作者
59#
發(fā)表于 2025-3-31 18:12:49 | 只看該作者
,3D Face Reconstruction with?Dense Landmarks, facial performance capture in both monocular and multi-view scenarios. Finally, our method is highly efficient: we can predict dense landmarks and fit our 3D face model at over 150FPS on a single CPU thread. Please see our website: ..
60#
發(fā)表于 2025-4-1 00:12:42 | 只看該作者
,Emotion-aware Multi-view Contrastive Learning for?Facial Emotion Recognition,entation in the polar coordinate, i.e., the Arousal-Valence space. Experimental results show that the proposed method improves the PCC/CCC performance by more than 10% compared to the runner-up method in the wild datasets and is also qualitatively better in terms of neural activation map. Code is av
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 20:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
启东市| 阳西县| 石泉县| 阿坝| 巴里| 田林县| 梧州市| 凤凰县| 安义县| 青浦区| 金寨县| 南宫市| 巴林左旗| 沛县| 浑源县| 和硕县| 澄迈县| 孝昌县| 高尔夫| 徐闻县| 南开区| 镇远县| 浙江省| 凤庆县| 河南省| 榆中县| 赣州市| 和静县| 阿勒泰市| 垦利县| 滦平县| 商城县| 宜宾市| 微博| 凤庆县| 禄丰县| 佛坪县| 佛学| 长乐市| 邵阳市| 东安县|