找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2022; 17th European Confer Shai Avidan,Gabriel Brostow,Tal Hassner Conference proceedings 2022 The Editor(s) (if app

[復(fù)制鏈接]
查看: 31949|回復(fù): 65
樓主
發(fā)表于 2025-3-21 19:18:28 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Computer Vision – ECCV 2022
副標(biāo)題17th European Confer
編輯Shai Avidan,Gabriel Brostow,Tal Hassner
視頻videohttp://file.papertrans.cn/235/234254/234254.mp4
叢書(shū)名稱(chēng)Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Computer Vision – ECCV 2022; 17th European Confer Shai Avidan,Gabriel Brostow,Tal Hassner Conference proceedings 2022 The Editor(s) (if app
描述.The 39-volume set, comprising the LNCS books 13661 until 13699, constitutes the refereed proceedings of the 17th European Conference on Computer Vision, ECCV 2022, held in Tel Aviv, Israel, during October 23–27, 2022..?.The 1645 papers presented in these proceedings were carefully reviewed and selected from a total of 5804 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation..
出版日期Conference proceedings 2022
關(guān)鍵詞artificial intelligence; computer networks; computer security; computer vision; databases; education; imag
版次1
doihttps://doi.org/10.1007/978-3-031-19781-9
isbn_softcover978-3-031-19780-2
isbn_ebook978-3-031-19781-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱(chēng)Computer Vision – ECCV 2022影響因子(影響力)




書(shū)目名稱(chēng)Computer Vision – ECCV 2022影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Computer Vision – ECCV 2022網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Computer Vision – ECCV 2022網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Computer Vision – ECCV 2022被引頻次




書(shū)目名稱(chēng)Computer Vision – ECCV 2022被引頻次學(xué)科排名




書(shū)目名稱(chēng)Computer Vision – ECCV 2022年度引用




書(shū)目名稱(chēng)Computer Vision – ECCV 2022年度引用學(xué)科排名




書(shū)目名稱(chēng)Computer Vision – ECCV 2022讀者反饋




書(shū)目名稱(chēng)Computer Vision – ECCV 2022讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:59:13 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:26:03 | 只看該作者
FrequencyLowCut Pooling - Plug and Play Against Catastrophic Overfitting,to any CNN architecture: FrequencyLowCut pooling. Our experiments show, that in combination with simple and Fast Gradient Sign Method (FGSM) adversarial training, our hyper-parameter free operator substantially improves model robustness and avoids catastrophic overfitting. Our code is available at .
地板
發(fā)表于 2025-3-22 08:13:20 | 只看該作者
TAFIM: Targeted Adversarial Attacks Against Facial Image Manipulations,alized model only needs a single forward pass, thus running orders of magnitude faster and allowing for easy integration in image processing stacks, even on resource-constrained devices like smartphones (Project Page: .).
5#
發(fā)表于 2025-3-22 09:01:50 | 只看該作者
6#
發(fā)表于 2025-3-22 16:49:44 | 只看該作者
,An Information Theoretic Approach for?Attention-Driven Face Forgery Detection,g-and-play block, termed self-information attention (SIA) module, which can be integrated with most of the top-performance deep models to boost their detection performance. The SIA module can explicitly help the model locate the informative regions and recalibrate channel-wise feature responses, whi
7#
發(fā)表于 2025-3-22 20:46:45 | 只看該作者
8#
發(fā)表于 2025-3-23 00:45:02 | 只看該作者
9#
發(fā)表于 2025-3-23 02:32:51 | 只看該作者
,Adaptive Cross-domain Learning for?Generalizable Person Re-identification,omplementary branches, a dynamic branch for extracting domain-adaptive features and a static branch for extracting the domain-invariant features. Extensive experiments demonstrate that the proposed approach achieves state-of-the-art performances on the popular benchmarks. Under Protocol-2, our metho
10#
發(fā)表于 2025-3-23 08:07:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 06:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
齐河县| 惠来县| 徐汇区| 南木林县| 江陵县| 古丈县| 镇巴县| 泗阳县| 大荔县| 乳山市| 城市| 白朗县| 天台县| 大厂| 伊通| 嫩江县| 定结县| 伊川县| 龙胜| 淳安县| 浦江县| 西华县| 施甸县| 交城县| 扶沟县| 阿拉善右旗| 康乐县| 集安市| 柞水县| 克什克腾旗| 宿迁市| 秦皇岛市| 阿尔山市| 平江县| 盐津县| 湖北省| 丘北县| 石屏县| 禄丰县| 嘉善县| 沙洋县|