找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2022; 17th European Confer Shai Avidan,Gabriel Brostow,Tal Hassner Conference proceedings 2022 The Editor(s) (if app

[復(fù)制鏈接]
樓主: HEIR
41#
發(fā)表于 2025-3-28 14:56:48 | 只看該作者
42#
發(fā)表于 2025-3-28 21:02:48 | 只看該作者
,The Caltech Fish Counting Dataset: A Benchmark for?Multiple-Object Tracking and?Counting,rain MOT and counting algorithms and evaluate generalization performance at unseen test locations. We perform extensive baseline experiments and identify key challenges and opportunities for advancing the state of the art in generalization in MOT and counting.
43#
發(fā)表于 2025-3-29 00:15:48 | 只看該作者
,ECCV Caption: Correcting False Negatives by?Collecting Machine-and-Human-verified Image-Caption Assificant limitation. They have many missing correspondences, originating from the data construction process itself. For example, a caption is only matched with one image although the caption can be matched with other similar images and vice versa. To correct the massive false negatives, we construct
44#
發(fā)表于 2025-3-29 06:48:07 | 只看該作者
MOTCOM: The Multi-Object Tracking Dataset Complexity Metric,lity, complicates comparison of datasets, and reduces the conversation on tracker performance to a matter of leader board position. As a remedy, we present the novel MOT dataset complexity metric (MOTCOM), which is a combination of three sub-metrics inspired by key problems in MOT: occlusion, errati
45#
發(fā)表于 2025-3-29 08:58:05 | 只看該作者
,How to?Synthesize a?Large-Scale and?Trainable Micro-Expression Dataset?,ress the lack of large-scale datasets in micro-expression (MiE) recognition due to the prohibitive cost of data collection, which renders large-scale training less feasible. To this end, we develop a protocol to automatically synthesize large scale MiE training data that allow us to train improved r
46#
發(fā)表于 2025-3-29 11:26:15 | 只看該作者
47#
發(fā)表于 2025-3-29 19:36:41 | 只看該作者
,REALY: Rethinking the?Evaluation of?3D Face Reconstruction, We observe that aligning two shapes with different reference points can largely affect the evaluation results. This poses difficulties for precisely diagnosing and improving a 3D face reconstruction method. In this paper, we propose a novel evaluation approach with a new benchmark REALY, consists o
48#
發(fā)表于 2025-3-29 23:16:08 | 只看該作者
49#
發(fā)表于 2025-3-30 00:01:51 | 只看該作者
50#
發(fā)表于 2025-3-30 04:08:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 01:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
皋兰县| 伽师县| 丘北县| 厦门市| 德庆县| 巫溪县| 大新县| 沁阳市| 凤城市| 林甸县| 榆林市| 汉源县| 瑞昌市| 安庆市| 孝义市| 内江市| 鄢陵县| 玉田县| 元朗区| 和政县| 修武县| 台北市| 漳浦县| 海原县| 东山县| 九龙城区| 新宁县| 甘孜县| 霍城县| 尤溪县| 甘洛县| 巴塘县| 惠水县| 丁青县| 武川县| 修武县| 旅游| 临夏市| 南城县| 淮南市| 龙口市|