找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2022; 17th European Confer Shai Avidan,Gabriel Brostow,Tal Hassner Conference proceedings 2022 The Editor(s) (if app

[復(fù)制鏈接]
樓主: relapse
31#
發(fā)表于 2025-3-27 00:56:42 | 只看該作者
Use of Constraint Programming for Designproved by our pre-training, suggesting that the transferred knowledge is helpful in semi-supervised setting. We verify the effectiveness of our approach on two popular 3D models and three different tasks. On ScanNet official evaluation, we establish new state-of-the-art semantic segmentation results on the data-efficient track.
32#
發(fā)表于 2025-3-27 03:04:27 | 只看該作者
L. Asión-Su?er,I. López-Forniése propagation from encoder to decoder for maintaining the contexture of transparent objects. In addition, we create a high-resolution matting dataset of transparent objects with small known foreground areas. Experiments on several matting benchmarks demonstrate the superiority of our proposed method over the current state-of-the-art methods.
33#
發(fā)表于 2025-3-27 05:30:52 | 只看該作者
34#
發(fā)表于 2025-3-27 10:11:06 | 只看該作者
35#
發(fā)表于 2025-3-27 16:32:08 | 只看該作者
36#
發(fā)表于 2025-3-27 19:05:32 | 只看該作者
,Data Efficient 3D Learner via?Knowledge Transferred from?2D Model,proved by our pre-training, suggesting that the transferred knowledge is helpful in semi-supervised setting. We verify the effectiveness of our approach on two popular 3D models and three different tasks. On ScanNet official evaluation, we establish new state-of-the-art semantic segmentation results on the data-efficient track.
37#
發(fā)表于 2025-3-28 00:07:37 | 只看該作者
,TransMatting: Enhancing Transparent Objects Matting with?Transformers,e propagation from encoder to decoder for maintaining the contexture of transparent objects. In addition, we create a high-resolution matting dataset of transparent objects with small known foreground areas. Experiments on several matting benchmarks demonstrate the superiority of our proposed method over the current state-of-the-art methods.
38#
發(fā)表于 2025-3-28 02:43:34 | 只看該作者
,MVSalNet: Multi-view Augmentation for?RGB-D Salient Object Detection,s multi-view outputs through a fusion model to produce final saliency prediction. A dynamic filtering module is also designed to facilitate more effective and flexible feature extraction. Extensive experiments on 6 widely used datasets demonstrate that our approach compares favorably against state-of-the-art approaches.
39#
發(fā)表于 2025-3-28 08:11:04 | 只看該作者
40#
發(fā)表于 2025-3-28 14:10:48 | 只看該作者
Skyline-Based Temporal Graph Exploration function, the level set for each instance is iteratively optimized within its corresponding bounding box annotation. The experimental results on four challenging benchmarks demonstrate the leading performance of our proposed approach to robust instance segmentation in various scenarios. The code is
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 15:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
田东县| 富裕县| 德化县| 永平县| 清水县| 从江县| 瑞金市| 文安县| 拜城县| 兴隆县| 淮北市| 公主岭市| 阳信县| 铅山县| 谢通门县| 玛纳斯县| 满城县| 浦城县| 莒南县| 建昌县| 乌兰察布市| 竹溪县| 高淳县| 宕昌县| 筠连县| 彭泽县| 山东| 海城市| 巴青县| 苍溪县| 泸水县| 翁源县| 铜山县| 习水县| 齐齐哈尔市| 鹤壁市| 罗定市| 民勤县| 姚安县| 麦盖提县| 同心县|