找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2022; 17th European Confer Shai Avidan,Gabriel Brostow,Tal Hassner Conference proceedings 2022 The Editor(s) (if app

[復(fù)制鏈接]
樓主: 租期
31#
發(fā)表于 2025-3-26 22:04:55 | 只看該作者
32#
發(fā)表于 2025-3-27 03:27:57 | 只看該作者
33#
發(fā)表于 2025-3-27 05:24:03 | 只看該作者
SpatialDETR: Robust Scalable Transformer-Based 3D Object Detection From Multi-view Camera Images Wixploits arbitrary receptive fields to integrate cross-sensor data and therefore global context. Extensive experiments on the nuScenes benchmark demonstrate the potential of global attention and result in state-of-the-art performance. Code available at ..
34#
發(fā)表于 2025-3-27 13:03:36 | 只看該作者
35#
發(fā)表于 2025-3-27 14:39:20 | 只看該作者
,PreTraM: Self-supervised Pre-training via?Connecting Trajectory and?Map,ctories and maps to a shared embedding space with cross-modal contrastive learning, 2) Map Contrastive Learning, where we enhance map representation with contrastive learning on large quantities of HD-maps. On top of popular baselines such as AgentFormer and Trajectron++, PreTraM reduces their error
36#
發(fā)表于 2025-3-27 20:36:46 | 只看該作者
,Master of?All: Simultaneous Generalization of?Urban-Scene Segmentation to?, Adverse Weather Conditi, given a pre-trained model and its parameters, . enforces edge consistency prior at the inference stage and updates the model based on (a) a single test sample at a time (.), or (b) continuously for the whole test domain (.). Not only the target data, . also does not need access to the source data
37#
發(fā)表于 2025-3-28 01:28:15 | 只看該作者
,LESS: Label-Efficient Semantic Segmentation for?LiDAR Point Clouds,g step, we leverage prototype learning to get more descriptive point embeddings and use multi-scan distillation to exploit richer semantics from temporally aggregated point clouds to boost the performance of single-scan models. Evaluated on the SemanticKITTI and the nuScenes datasets, we show that o
38#
發(fā)表于 2025-3-28 02:08:13 | 只看該作者
,Visual Cross-View Metric Localization with?Dense Uncertainty Estimates,e compare against a state-of-the-art regression baseline that uses global image descriptors. Quantitative and qualitative experimental results on the recently proposed VIGOR and the Oxford RobotCar datasets validate our design. The produced probabilities are correlated with localization accuracy, an
39#
發(fā)表于 2025-3-28 09:17:41 | 只看該作者
40#
發(fā)表于 2025-3-28 13:08:10 | 只看該作者
,DevNet: Self-supervised Monocular Depth Learning via?Density Volume Construction,sponding rays. During the training process, novel regularization strategies and loss functions are introduced to mitigate photometric ambiguities and overfitting. Without obviously enlarging model parameters size or running time, DevNet outperforms several representative baselines on both the KITTI-
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 19:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巍山| 江都市| 塔河县| 台北县| 虎林市| 乌苏市| 宁城县| 乌什县| 苗栗市| 安阳县| 托里县| 阳江市| 高阳县| 合江县| 竹北市| 靖宇县| 汕头市| 彰化县| 台中县| 澳门| 新宾| 文昌市| 海伦市| 工布江达县| 呼伦贝尔市| 东光县| 奉化市| 招远市| 崇左市| 张家港市| 保靖县| 汽车| 嵊州市| 资兴市| 屏山县| 平安县| 永宁县| 裕民县| 乌恰县| 桃园县| 遵义市|