找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2022; 17th European Confer Shai Avidan,Gabriel Brostow,Tal Hassner Conference proceedings 2022 The Editor(s) (if app

[復制鏈接]
樓主: Roosevelt
31#
發(fā)表于 2025-3-26 23:43:04 | 只看該作者
Skeleton-Parted Graph Scattering Networks for 3D Human Motion Prediction,). The cores of the model are cascaded multi-part graph scattering blocks (MPGSBs), building adaptive graph scattering on diverse body-parts, as well as fusing the decomposed features based on the inferred spectrum importance and body-part interactions. Extensive experiments have shown that SPGSN ou
32#
發(fā)表于 2025-3-27 03:00:22 | 只看該作者
33#
發(fā)表于 2025-3-27 08:51:16 | 只看該作者
,Regularizing Vector Embedding in?Bottom-Up Human Pose Estimation,linear correlation of embeddings and makes embeddings being sparse. We evaluate our model on CrowdPose Test and COCO Test-dev. Compared to vanilla Associative Embedding, our method has an impressive superiority in keypoint grouping, especially in crowded scenes with a large number of instances. Furt
34#
發(fā)表于 2025-3-27 13:27:37 | 只看該作者
35#
發(fā)表于 2025-3-27 14:39:22 | 只看該作者
36#
發(fā)表于 2025-3-27 20:41:34 | 只看該作者
,EgoBody: Human Body Shape and?Motion of?Interacting People from?Head-Mounted Devices,to multi-view RGB-D frames, reconstructing 3D human shapes and poses relative to the scene, over time. We collect 125 sequences, spanning diverse interaction scenarios, and propose the first benchmark for 3D full-body pose and shape estimation of the interaction partner from egocentric views. We ext
37#
發(fā)表于 2025-3-28 00:08:35 | 只看該作者
,Grasp’D: Differentiable Contact-Rich Grasp Synthesis for?Multi-Fingered Hands,e to gradient-based optimization, such as non-smooth object surface geometry, contact sparsity, and a rugged optimization landscape. Grasp’D compares favorably to analytic grasp synthesis on human and robotic hand models, and resultant grasps achieve over 4. denser contact, leading to significantly
38#
發(fā)表于 2025-3-28 02:31:48 | 只看該作者
,AutoAvatar: Autoregressive Neural Fields for?Dynamic Avatar Modeling,ed observer points leads to significantly better generalization compared to a latent representation. The experiments show that our approach outperforms the state of the art, achieving plausible dynamic deformations even for unseen motions. ..
39#
發(fā)表于 2025-3-28 09:43:57 | 只看該作者
,SAGA: Stochastic Whole-Body Grasping with?Contact,ial pose and the generated whole-body grasping pose as the start and end of the motion respectively, we design a novel contact-aware generative motion infilling module to generate a diverse set of grasp-oriented motions. We demonstrate the effectiveness of our method, which is a novel generative fra
40#
發(fā)表于 2025-3-28 11:02:53 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 18:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
黄大仙区| 阳曲县| 灌云县| 塔城市| 望谟县| 郴州市| 肥乡县| 上饶县| 邵阳市| 祥云县| 通辽市| 浠水县| 镇平县| 水富县| 新沂市| 玉山县| 伊春市| 南木林县| 昔阳县| 晋中市| 昌江| 西贡区| 抚松县| 金山区| 岳普湖县| 隆回县| 和顺县| 贵港市| 衢州市| 手机| 澄迈县| 玉树县| 仙桃市| 左贡县| 鄱阳县| 汝州市| 壤塘县| 唐海县| 咸宁市| 巫山县| 高台县|