找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2022; 17th European Confer Shai Avidan,Gabriel Brostow,Tal Hassner Conference proceedings 2022 The Editor(s) (if app

[復(fù)制鏈接]
樓主: 欺騙某人
51#
發(fā)表于 2025-3-30 08:51:51 | 只看該作者
,Neural Scene Decoration from?a?Single Photograph,d a 3D model of the space, decorate, and then perform rendering. Although the task is important, it is tedious and requires tremendous effort. In this paper, we introduce a new problem of domain-specific indoor scene image synthesis, namely neural scene decoration. Given a photograph of an empty ind
52#
發(fā)表于 2025-3-30 16:03:34 | 只看該作者
53#
發(fā)表于 2025-3-30 16:32:16 | 只看該作者
54#
發(fā)表于 2025-3-30 23:17:20 | 只看該作者
,ChunkyGAN: Real Image Inversion via?Segments,al latent representation of the input image, our approach subdivides the input image into a set of smaller components (chunks) specified either manually or automatically using a pre-trained segmentation network. For each chunk, the latent code of a generative network is estimated locally with greate
55#
發(fā)表于 2025-3-31 04:43:14 | 只看該作者
GAN Cocktail: Mixing GANs Without Dataset Access,ed for model merging: combining two or more pretrained generative models into a single unified one. In this work we tackle the problem of model merging, given two constraints that often come up in the real world: (1) no access to the original training data, and (2) without increasing the network siz
56#
發(fā)表于 2025-3-31 08:29:35 | 只看該作者
,Geometry-Guided Progressive NeRF for?Generalizable and?Efficient Neural Human Rendering,mera views. Though existing NeRF-based methods can synthesize rather realistic details for human body, they tend to produce poor results when the input has self-occlusion, especially for unseen humans under sparse views. Moreover, these methods often require a large number of sampling points for ren
57#
發(fā)表于 2025-3-31 11:44:58 | 只看該作者
Controllable Shadow Generation Using Pixel Height Maps,ot always available. Deep learning-based shadow synthesis methods learn a mapping from the light information to an object’s shadow without explicitly modeling the shadow geometry. Still, they lack control and are prone to visual artifacts. We introduce “Pixel Height", a novel geometry representation
58#
發(fā)表于 2025-3-31 15:28:53 | 只看該作者
59#
發(fā)表于 2025-3-31 19:38:39 | 只看該作者
Subspace Diffusion Generative Models,sary to run this entire process at high dimensionality and incur all the inconveniences thereof. Instead, we restrict the diffusion via projections onto . as the data distribution evolves toward noise. When applied to state-of-the-art models, our framework simultaneously . sample quality—reaching an
60#
發(fā)表于 2025-3-31 21:56:23 | 只看該作者
,DuelGAN: A Duel Between Two Discriminators Stabilizes the?GAN Training, mode collapse. Built upon the Vanilla GAN’s two-player game between the discriminator . and the generator ., we introduce a peer discriminator . to the min-max game. Similar to previous work using two discriminators, the first role of both ., . is to distinguish between generated samples and real o
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 22:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
浪卡子县| 锦屏县| 宜章县| 界首市| 青冈县| 隆安县| 加查县| 登封市| 囊谦县| 乌拉特中旗| 通江县| 攀枝花市| 玛沁县| 鹤岗市| 娱乐| 嵩明县| 乐山市| 神池县| 布拖县| 高平市| 从江县| 板桥市| 定安县| 江源县| 北海市| 奇台县| 平阳县| 夏邑县| 海晏县| 江都市| 老河口市| 乌拉特后旗| 阳西县| 陈巴尔虎旗| 永修县| 鹤山市| 北京市| 徐闻县| 互助| 罗甸县| 麻江县|