找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2020; 16th European Confer Andrea Vedaldi,Horst Bischof,Jan-Michael Frahm Conference proceedings 2020 Springer Natur

[復(fù)制鏈接]
查看: 29885|回復(fù): 64
樓主
發(fā)表于 2025-3-21 19:03:44 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Computer Vision – ECCV 2020
副標(biāo)題16th European Confer
編輯Andrea Vedaldi,Horst Bischof,Jan-Michael Frahm
視頻videohttp://file.papertrans.cn/235/234230/234230.mp4
叢書(shū)名稱Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Computer Vision – ECCV 2020; 16th European Confer Andrea Vedaldi,Horst Bischof,Jan-Michael Frahm Conference proceedings 2020 Springer Natur
描述The 30-volume set, comprising the LNCS books 12346 until 12375, constitutes the refereed proceedings of the 16th European Conference on Computer Vision, ECCV 2020, which was planned to be held in Glasgow, UK, during August 23-28, 2020. The conference was held virtually due to the COVID-19 pandemic..The 1360 revised papers presented in these proceedings were carefully reviewed and selected from a total of 5025 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation..?..?.
出版日期Conference proceedings 2020
關(guān)鍵詞computer networks; computer vision; data security; education; face recognition; image analysis; image proc
版次1
doihttps://doi.org/10.1007/978-3-030-58592-1
isbn_softcover978-3-030-58591-4
isbn_ebook978-3-030-58592-1Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書(shū)目名稱Computer Vision – ECCV 2020影響因子(影響力)




書(shū)目名稱Computer Vision – ECCV 2020影響因子(影響力)學(xué)科排名




書(shū)目名稱Computer Vision – ECCV 2020網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Computer Vision – ECCV 2020網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Computer Vision – ECCV 2020被引頻次




書(shū)目名稱Computer Vision – ECCV 2020被引頻次學(xué)科排名




書(shū)目名稱Computer Vision – ECCV 2020年度引用




書(shū)目名稱Computer Vision – ECCV 2020年度引用學(xué)科排名




書(shū)目名稱Computer Vision – ECCV 2020讀者反饋




書(shū)目名稱Computer Vision – ECCV 2020讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:16:20 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:44:03 | 只看該作者
地板
發(fā)表于 2025-3-22 07:43:37 | 只看該作者
,Measuring Generalisation to Unseen Viewpoints, Articulations, Shapes and?Objects for 3D Hand Pose Egned (a) to evaluate the influence of both depth and color modalities on 3D hand pose estimation, under the presence or absence of objects; (b) to assess the generalisation abilities .. ?four main axes: shapes, articulations, viewpoints, and objects; (c) to explore the use of a synthetic hand models
5#
發(fā)表于 2025-3-22 12:29:58 | 只看該作者
Disentangling Multiple Features in Video Sequences Using Gaussian Processes in Variational Autoencothe curvature of the data manifold to improve learning. Our experiments show that the combination of the improved representations with the novel loss function enable MGP-VAE to outperform the baselines in video prediction.
6#
發(fā)表于 2025-3-22 14:02:41 | 只看該作者
7#
發(fā)表于 2025-3-22 17:13:03 | 只看該作者
SACA Net: Cybersickness Assessment of Individual Viewers for VR Content via Graph-Based Symptom Relmulus-response symptom features to effectively predict cybersickness by embedding relational characteristics with graph formulation. For validation, we utilize two public 360-degree video datasets that contain cybersickness scores and physiological signals. Experimental results show that the propose
8#
發(fā)表于 2025-3-22 23:03:19 | 只看該作者
9#
發(fā)表于 2025-3-23 03:50:02 | 只看該作者
Know Your Surroundings: Exploiting Scene Information for Object Tracking,re propagated through the sequence and combined with the appearance model output to localize the target. Our network is learned to effectively utilize the scene information by directly maximizing tracking performance on video segments. The proposed approach sets a new state-of-the-art on 3 tracking
10#
發(fā)表于 2025-3-23 07:10:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 04:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
滨海县| 乌拉特中旗| 龙山县| 霍林郭勒市| 兴国县| 曲阜市| 福鼎市| 辽阳县| 宁陕县| 施秉县| 昌图县| 香格里拉县| 溧水县| 墨脱县| 望江县| 白河县| 盐池县| 嵩明县| 城步| 揭西县| 福贡县| 措勤县| 无锡市| 铁岭市| 平遥县| 虞城县| 张家界市| 庄浪县| 二连浩特市| 临城县| 蒙城县| 平塘县| 象州县| 盐亭县| 白玉县| 普安县| 会东县| 广饶县| 奉节县| 武冈市| 鹰潭市|