找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2020; 16th European Confer Andrea Vedaldi,Horst Bischof,Jan-Michael Frahm Conference proceedings 2020 Springer Natur

[復制鏈接]
查看: 43610|回復: 58
樓主
發(fā)表于 2025-3-21 18:17:57 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Computer Vision – ECCV 2020
副標題16th European Confer
編輯Andrea Vedaldi,Horst Bischof,Jan-Michael Frahm
視頻videohttp://file.papertrans.cn/235/234229/234229.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Computer Vision – ECCV 2020; 16th European Confer Andrea Vedaldi,Horst Bischof,Jan-Michael Frahm Conference proceedings 2020 Springer Natur
描述The 30-volume set, comprising the LNCS books 12346 until 12375, constitutes the refereed proceedings of the 16th European Conference on Computer Vision, ECCV 2020, which was planned to be held in Glasgow, UK, during August 23-28, 2020. The conference was held virtually due to the COVID-19 pandemic..The 1360 revised papers presented in these proceedings were carefully reviewed and selected from a total of 5025 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation..?..?.
出版日期Conference proceedings 2020
關(guān)鍵詞computer vision; correlation analysis; data security; databases; face recognition; Human-Computer Interac
版次1
doihttps://doi.org/10.1007/978-3-030-58548-8
isbn_softcover978-3-030-58547-1
isbn_ebook978-3-030-58548-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Computer Vision – ECCV 2020影響因子(影響力)




書目名稱Computer Vision – ECCV 2020影響因子(影響力)學科排名




書目名稱Computer Vision – ECCV 2020網(wǎng)絡(luò)公開度




書目名稱Computer Vision – ECCV 2020網(wǎng)絡(luò)公開度學科排名




書目名稱Computer Vision – ECCV 2020被引頻次




書目名稱Computer Vision – ECCV 2020被引頻次學科排名




書目名稱Computer Vision – ECCV 2020年度引用




書目名稱Computer Vision – ECCV 2020年度引用學科排名




書目名稱Computer Vision – ECCV 2020讀者反饋




書目名稱Computer Vision – ECCV 2020讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:56:54 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:26:16 | 只看該作者
Semi-Siamese Training for Shallow Face Learning,fficient number of samples) for training. However, in many real-world scenarios of face recognition, the training dataset is limited in depth, . only two face images are available for each ID. . Unlike deep face data, the shallow face data lacks intra-class diversity. As such, it can lead to collaps
地板
發(fā)表于 2025-3-22 05:08:24 | 只看該作者
5#
發(fā)表于 2025-3-22 10:12:44 | 只看該作者
6#
發(fā)表于 2025-3-22 13:22:01 | 只看該作者
7#
發(fā)表于 2025-3-22 20:28:26 | 只看該作者
Axial-DeepLab: Stand-Alone Axial-Attention for Panoptic Segmentation,nteractions. Recent works prove it possible to stack self-attention layers to obtain a fully attentional network by restricting the attention to a local region. In this paper, we attempt to remove this constraint by factorizing 2D self-attention into two 1D self-attentions. This reduces computation
8#
發(fā)表于 2025-3-23 00:29:44 | 只看該作者
Adaptive Computationally Efficient Network for Monocular 3D Hand Pose Estimation,nced algorithms to achieve high pose estimation accuracy. However, besides accuracy, the computation efficiency that affects the computation speed and power consumption is also crucial for real-world applications. In this paper, we investigate the problem of reducing the overall computation cost yet
9#
發(fā)表于 2025-3-23 02:11:28 | 只看該作者
10#
發(fā)表于 2025-3-23 06:51:17 | 只看該作者
Distribution-Balanced Loss for Multi-label Classification in Long-Tailed Datasets,. Compared to conventional single-label classification problem, multi-label recognition problems are often more challenging due to two significant issues, namely the co-occurrence of labels and the dominance of negative labels (when treated as multiple binary classification problems). The Distributi
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 09:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
沙河市| 鹰潭市| 舟曲县| 太湖县| 巫山县| 德令哈市| 抚松县| 临武县| 昂仁县| 萨迦县| 察雅县| 咸丰县| 平和县| 灵武市| 扬中市| 陇川县| 确山县| 宜丰县| 临江市| 潢川县| 阿图什市| 英德市| 朝阳县| 资源县| 富平县| 高邮市| 鸡泽县| 甘南县| 鹤山市| 阳曲县| 潍坊市| 大新县| 宝鸡市| 永济市| 遂川县| 娄底市| 金昌市| 崇礼县| 车致| 梨树县| 当阳市|