找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2020; 16th European Confer Andrea Vedaldi,Horst Bischof,Jan-Michael Frahm Conference proceedings 2020 Springer Natur

[復(fù)制鏈接]
查看: 22771|回復(fù): 62
樓主
發(fā)表于 2025-3-21 18:12:40 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Computer Vision – ECCV 2020
副標(biāo)題16th European Confer
編輯Andrea Vedaldi,Horst Bischof,Jan-Michael Frahm
視頻videohttp://file.papertrans.cn/235/234217/234217.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Computer Vision – ECCV 2020; 16th European Confer Andrea Vedaldi,Horst Bischof,Jan-Michael Frahm Conference proceedings 2020 Springer Natur
描述The 30-volume set, comprising the LNCS books 12346 until 12375, constitutes the refereed proceedings of the 16th European Conference on Computer Vision, ECCV 2020, which was planned to be held in Glasgow, UK, during August 23-28, 2020. The conference was held virtually due to the COVID-19 pandemic..The 1360 revised papers presented in these proceedings were carefully reviewed and selected from a total of 5025 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation..?..?.
出版日期Conference proceedings 2020
關(guān)鍵詞computer networks; computer vision; databases; image analysis; image processing; information retrieval; le
版次1
doihttps://doi.org/10.1007/978-3-030-58526-6
isbn_softcover978-3-030-58525-9
isbn_ebook978-3-030-58526-6Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Computer Vision – ECCV 2020影響因子(影響力)




書目名稱Computer Vision – ECCV 2020影響因子(影響力)學(xué)科排名




書目名稱Computer Vision – ECCV 2020網(wǎng)絡(luò)公開度




書目名稱Computer Vision – ECCV 2020網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computer Vision – ECCV 2020被引頻次




書目名稱Computer Vision – ECCV 2020被引頻次學(xué)科排名




書目名稱Computer Vision – ECCV 2020年度引用




書目名稱Computer Vision – ECCV 2020年度引用學(xué)科排名




書目名稱Computer Vision – ECCV 2020讀者反饋




書目名稱Computer Vision – ECCV 2020讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:57:38 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:51:28 | 只看該作者
地板
發(fā)表于 2025-3-22 08:24:26 | 只看該作者
Simplicial Complex Based Point Correspondence Between Images Warped onto Manifolds,cess of higher-order assignment methods, has sparked an interest in the search for improved higher-order matching algorithms on warped images due to projection. Although, currently, several existing methods “flatten” such 3D images to use planar graph/hypergraph matching methods, they still suffer f
5#
發(fā)表于 2025-3-22 11:39:30 | 只看該作者
6#
發(fā)表于 2025-3-22 16:09:29 | 只看該作者
Distance-Normalized Unified Representation for Monocular 3D Object Detection,bject detection, we introduce a single-stage and multi-scale framework to learn a unified representation for objects within different distance ranges, termed as UR3D. UR3D formulates different tasks of detection by exploiting the scale information, to reduce model capacity requirement and achieve ac
7#
發(fā)表于 2025-3-22 18:35:12 | 只看該作者
8#
發(fā)表于 2025-3-22 23:36:21 | 只看該作者
Where to Explore Next? ExHistCNN for History-Aware Autonomous 3D Exploration,imation of the Next Best View (NBV) that maximises the coverage of the unknown area. We do this by re-formulating NBV estimation as a classification problem and we propose a novel learning-based metric that encodes both, the current 3D observation (a depth frame) and the history of the ongoing recon
9#
發(fā)表于 2025-3-23 03:06:57 | 只看該作者
Semi-supervised Segmentation Based on Error-Correcting Supervision,oped recently. In this work, we augment such supervised segmentation models by allowing them to learn from unlabeled data. Our semi-supervised approach, termed Error-Correcting Supervision, leverages a collaborative strategy. Apart from the supervised training on the labeled data, the segmentation n
10#
發(fā)表于 2025-3-23 07:04:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 00:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
布拖县| 萨迦县| 巩留县| 遂宁市| 霍林郭勒市| 扎赉特旗| 海盐县| 永福县| 沙河市| 固原市| 土默特右旗| 阳原县| 张家川| 井陉县| 简阳市| 江川县| 安顺市| 永昌县| 山阳县| 湘乡市| 兴化市| 扎兰屯市| 综艺| 偏关县| 清镇市| 安阳县| 富锦市| 安乡县| 土默特右旗| 藁城市| 双城市| 改则县| 城步| 巴彦县| 武平县| 梓潼县| 吐鲁番市| 额尔古纳市| 长汀县| 连云港市| 兴化市|