找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2020; 16th European Confer Andrea Vedaldi,Horst Bischof,Jan-Michael Frahm Conference proceedings 2020 Springer Natur

[復(fù)制鏈接]
樓主: 葉子
11#
發(fā)表于 2025-3-23 09:47:43 | 只看該作者
12#
發(fā)表于 2025-3-23 14:35:05 | 只看該作者
13#
發(fā)表于 2025-3-23 18:14:42 | 只看該作者
Appearance-Preserving 3D Convolution for Video-Based Person Re-identification,tion (ReID). In this case, 3D convolution may destroy the appearance representation of person video clips, thus it is harmful to ReID. To address this problem, we propose Appearance-Preserving 3D Convolution (AP3D), which is composed of two components: an Appearance-Preserving Module (APM) and a 3D
14#
發(fā)表于 2025-3-24 00:52:45 | 只看該作者
15#
發(fā)表于 2025-3-24 04:18:46 | 只看該作者
Exploiting Deep Generative Prior for Versatile Image Restoration and Manipulation,-level image statistics, there are still gaps toward an image prior that captures rich image semantics including color, spatial coherence, textures, and high-level concepts. This work presents an effective way to exploit the image prior captured by a generative adversarial network (GAN) trained on l
16#
發(fā)表于 2025-3-24 08:51:35 | 只看該作者
Deep Spatial-Angular Regularization for Compressive Light Field Reconstruction over Coded Aperturesements that are further decoded by reconstruction algorithms. The bottleneck lies in the reconstruction algorithms, resulting in rather limited reconstruction quality. To tackle this challenge, we propose a novel learning-based framework for the reconstruction of high-quality LFs from acquisitions v
17#
發(fā)表于 2025-3-24 11:33:10 | 只看該作者
18#
發(fā)表于 2025-3-24 18:26:20 | 只看該作者
Combining Implicit Function Learning and Parametric Models for 3D Human Reconstruction,aces that are not controllable, which provides limited ability to modify the resulting model by editing its pose or shape parameters. Nevertheless, such features are essential in building flexible models for both computer graphics and computer vision. In this work, we present methodology that combin
19#
發(fā)表于 2025-3-24 20:47:39 | 只看該作者
20#
發(fā)表于 2025-3-25 02:29:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-28 08:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
林甸县| 龙陵县| 吴江市| 乌鲁木齐市| 兴隆县| 盈江县| 息烽县| 乡城县| 天全县| 大渡口区| 府谷县| 斗六市| 红桥区| 宜春市| 东乡县| 平果县| 玉溪市| 抚州市| 雷州市| 唐山市| 洪雅县| 隆化县| 兰西县| 丰宁| 凤山县| 黄大仙区| 昌都县| 峡江县| 云龙县| 台安县| 高要市| 墨竹工卡县| 泽普县| 三门县| 灵武市| 南昌县| 图木舒克市| 浦北县| 永仁县| 玉树县| 洪洞县|