找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2018 Workshops; Munich, Germany, Sep Laura Leal-Taixé,Stefan Roth Conference proceedings 2019 Springer Nature Switze

[復(fù)制鏈接]
樓主: 譴責(zé)
41#
發(fā)表于 2025-3-28 15:08:01 | 只看該作者
42#
發(fā)表于 2025-3-28 18:57:36 | 只看該作者
43#
發(fā)表于 2025-3-29 00:53:25 | 只看該作者
CRAFT: Complementary Recommendation by Adversarial Feature Transformcomplementary recommendation. Our model learns a non-linear transformation between the two manifolds of source and target item categories (e.g., tops and bottoms in outfits). Given a large dataset of images containing instances of co-occurring items, we train a generative transformer network directl
44#
發(fā)表于 2025-3-29 06:13:41 | 只看該作者
Full-Body High-Resolution Anime Generation with Progressive Structure-Conditional Generative Adversacharacter images based on structural information. Recent progress in generative adversarial networks with progressive training has made it possible to generate high-resolution images. However, existing approaches have limitations in achieving both high image quality and structural consistency at the
45#
發(fā)表于 2025-3-29 10:04:35 | 只看該作者
Convolutional Photomosaic Generation via Multi-scale Perceptual Lossesof the mosaic collectively resemble a perceptually plausible image. In this paper, we consider the challenge of automatically generating a photomosaic from an input image. Although computer-generated photomosaicking has existed for quite some time, none have considered simultaneously exploiting colo
46#
發(fā)表于 2025-3-29 14:54:26 | 只看該作者
47#
發(fā)表于 2025-3-29 16:52:24 | 只看該作者
48#
發(fā)表于 2025-3-29 23:13:52 | 只看該作者
49#
發(fā)表于 2025-3-30 02:30:12 | 只看該作者
50#
發(fā)表于 2025-3-30 06:08:56 | 只看該作者
Joint Future Semantic and Instance Segmentation Predictionntly introduced towards better machine intelligence. However, predicting directly in the image color space seems an overly complex task, and predicting higher level representations using semantic or instance segmentation approaches were shown to be more accurate. In this work, we introduce a novel p
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 22:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永福县| 嫩江县| 榕江县| 济南市| 龙山县| 威海市| 梨树县| 乡城县| 锡林郭勒盟| 永吉县| 田阳县| 隆子县| 河源市| 星座| 余江县| 剑阁县| 拉萨市| 九台市| 肥城市| 吉安县| 东平县| 常宁市| 小金县| 会东县| 惠来县| 邳州市| 绍兴市| 嘉荫县| 同江市| 永清县| 汉中市| 丽水市| 东城区| 惠东县| 靖安县| 张北县| 龙山县| 玉环县| 夏河县| 惠来县| 同心县|