找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2018 Workshops; Munich, Germany, Sep Laura Leal-Taixé,Stefan Roth Conference proceedings 2019 Springer Nature Switze

[復制鏈接]
樓主: 譴責
41#
發(fā)表于 2025-3-28 15:08:01 | 只看該作者
42#
發(fā)表于 2025-3-28 18:57:36 | 只看該作者
43#
發(fā)表于 2025-3-29 00:53:25 | 只看該作者
CRAFT: Complementary Recommendation by Adversarial Feature Transformcomplementary recommendation. Our model learns a non-linear transformation between the two manifolds of source and target item categories (e.g., tops and bottoms in outfits). Given a large dataset of images containing instances of co-occurring items, we train a generative transformer network directl
44#
發(fā)表于 2025-3-29 06:13:41 | 只看該作者
Full-Body High-Resolution Anime Generation with Progressive Structure-Conditional Generative Adversacharacter images based on structural information. Recent progress in generative adversarial networks with progressive training has made it possible to generate high-resolution images. However, existing approaches have limitations in achieving both high image quality and structural consistency at the
45#
發(fā)表于 2025-3-29 10:04:35 | 只看該作者
Convolutional Photomosaic Generation via Multi-scale Perceptual Lossesof the mosaic collectively resemble a perceptually plausible image. In this paper, we consider the challenge of automatically generating a photomosaic from an input image. Although computer-generated photomosaicking has existed for quite some time, none have considered simultaneously exploiting colo
46#
發(fā)表于 2025-3-29 14:54:26 | 只看該作者
47#
發(fā)表于 2025-3-29 16:52:24 | 只看該作者
48#
發(fā)表于 2025-3-29 23:13:52 | 只看該作者
49#
發(fā)表于 2025-3-30 02:30:12 | 只看該作者
50#
發(fā)表于 2025-3-30 06:08:56 | 只看該作者
Joint Future Semantic and Instance Segmentation Predictionntly introduced towards better machine intelligence. However, predicting directly in the image color space seems an overly complex task, and predicting higher level representations using semantic or instance segmentation approaches were shown to be more accurate. In this work, we introduce a novel p
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-14 00:51
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
喀什市| 长子县| 民和| 吐鲁番市| 瑞丽市| 酉阳| 湖北省| 莱西市| 资溪县| 兴海县| 安图县| 三亚市| 苗栗市| 齐齐哈尔市| 江永县| 淅川县| 靖安县| 富锦市| 平顶山市| 梨树县| 东乌珠穆沁旗| 南澳县| 清流县| 房山区| 读书| 清新县| 时尚| 孙吴县| 赣榆县| 泾源县| 米易县| 阿克苏市| 莫力| 雷波县| 芮城县| 于都县| 贵南县| 西盟| 晋城| 斗六市| 韩城市|