找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2018; 15th European Confer Vittorio Ferrari,Martial Hebert,Yair Weiss Conference proceedings 2018 Springer Nature Sw

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 13:02:21 | 只看該作者
https://doi.org/10.1007/978-1-84800-171-8identification (re-ID). To achieve it, we propose a novel Robust AnChor Embedding (RACE) framework via deep feature representation learning for large-scale unsupervised video re-ID. Within this framework, anchor sequences representing different persons are firstly selected to formulate an anchor gra
12#
發(fā)表于 2025-3-23 17:34:09 | 只看該作者
13#
發(fā)表于 2025-3-23 18:28:51 | 只看該作者
Acute and Chronic Pericarditis,y Equilibrium Generative Adversarial Network (BEGAN), which is one of the state-of-the-art generative models. Despite its potential of generating high-quality images, we find that BEGAN tends to collapse at some modes after a period of training. We propose a new model, called . (BEGAN-CS), which inc
14#
發(fā)表于 2025-3-24 00:19:14 | 只看該作者
https://doi.org/10.1007/978-1-84800-171-8ld. Recently, a few domain adaptation and active learning approaches have been proposed to mitigate the performance drop. However, very little attention has been made toward leveraging information in videos which are naturally captured in most camera systems. In this work, we propose to leverage “mo
15#
發(fā)表于 2025-3-24 03:55:10 | 只看該作者
Acute and Chronic Pericarditis,e underlying body geometry, motion component and the clothing as a geometric layer. So far this clothing layer has only been used as raw offsets for individual applications such as retargeting a different body capture sequence with the clothing layer of another sequence, with limited scope, . using
16#
發(fā)表于 2025-3-24 08:09:05 | 只看該作者
17#
發(fā)表于 2025-3-24 11:46:39 | 只看該作者
https://doi.org/10.1007/978-1-84800-171-8SR are more difficult to train. The low-resolution inputs and features contain abundant low-frequency information, which is treated equally across channels, hence hindering the representational ability of CNNs. To solve these problems, we propose the very deep residual channel attention networks (RC
18#
發(fā)表于 2025-3-24 18:28:47 | 只看該作者
https://doi.org/10.1007/978-3-030-01234-2computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; imag
19#
發(fā)表于 2025-3-24 21:03:41 | 只看該作者
20#
發(fā)表于 2025-3-25 01:14:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 03:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临武县| 霍山县| 湘潭市| 江油市| 茌平县| 顺昌县| 乐亭县| 法库县| 略阳县| 辽宁省| 平湖市| 铜梁县| 盐津县| 迁安市| 陵川县| 娄底市| 香港 | 兴海县| 兰州市| 阿巴嘎旗| 邛崃市| 黔西| 宁津县| 广水市| 泽库县| 礼泉县| 西贡区| 连平县| 堆龙德庆县| 闽侯县| 闻喜县| 丽水市| 洞口县| 田林县| 赤壁市| 桓台县| 文山县| 米易县| 临朐县| 婺源县| 荔浦县|