找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2018; 15th European Confer Vittorio Ferrari,Martial Hebert,Yair Weiss Conference proceedings 2018 Springer Nature Sw

[復(fù)制鏈接]
樓主: 歸納
41#
發(fā)表于 2025-3-28 15:56:49 | 只看該作者
Snap Angle Prediction for 360, Panoramasage may enable content-aware projection with fewer perceptible distortions. Whereas existing approaches assume the viewpoint is fixed, intuitively some viewing angles within the sphere preserve high-level objects better than others. To discover the relationship between these optimal . and the spheri
42#
發(fā)表于 2025-3-28 20:08:02 | 只看該作者
43#
發(fā)表于 2025-3-28 23:38:52 | 只看該作者
DF-Net: Unsupervised Joint Learning of Depth and Flow Using Cross-Task Consistencyled video sequences. Existing unsupervised methods often exploit brightness constancy and spatial smoothness priors to train depth or flow models. In this paper, we propose to leverage geometric consistency as additional supervisory signals. Our core idea is that for rigid regions we can use the pre
44#
發(fā)表于 2025-3-29 04:33:04 | 只看該作者
45#
發(fā)表于 2025-3-29 09:59:59 | 只看該作者
Transductive Centroid Projection for Semi-supervised Large-Scale Recognitiononal complexity when collaborating with Convolutional Neural Networks. To this end, we design a simple but effective learning mechanism that merely substitutes the last fully-connected layer with the proposed Transductive Centroid Projection (TCP) module. It is inspired by the observation of the wei
46#
發(fā)表于 2025-3-29 14:49:52 | 只看該作者
47#
發(fā)表于 2025-3-29 17:45:10 | 只看該作者
Into the Twilight Zone: Depth Estimation Using Joint Structure-Stereo Optimizationenoising approach – which we show to be ineffective for stereo due to its artefacts and the questionable use of the PSNR metric, we propose to instead rely on structures comprising of piecewise constant regions and principal edges in the given image, as these are the important regions for extracting
48#
發(fā)表于 2025-3-29 21:26:44 | 只看該作者
Recycle-GAN: Unsupervised Video Retargetingative to a domain, i.e., if contents of John Oliver’s speech were to be transferred to Stephen Colbert, then the generated content/speech should be in Stephen Colbert’s style. Our approach combines both spatial and temporal information along with adversarial losses for content translation and style
49#
發(fā)表于 2025-3-30 02:46:44 | 只看該作者
50#
發(fā)表于 2025-3-30 06:23:56 | 只看該作者
Open Set Domain Adaptation by Backpropagatione proposed for closed-set scenario, where the source and the target domain completely share the class of their samples. However, in practice, a target domain can contain samples of classes that are not shared by the source domain. We call such classes the “unknown class” and algorithms that work wel
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 07:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
怀安县| 神农架林区| 扶绥县| 浑源县| 东至县| 綦江县| 旺苍县| 淮北市| 孙吴县| 永川市| 大庆市| 茶陵县| 名山县| 米泉市| 政和县| 淅川县| 南华县| 台中县| 财经| 桓台县| 博爱县| 监利县| 南川市| 兴仁县| 蒙自县| 油尖旺区| 桂阳县| 通江县| 大庆市| 华阴市| 陇川县| 周至县| 南丹县| 广水市| 漠河县| 盐边县| 哈尔滨市| 崇信县| 九江县| 阿合奇县| 柘城县|