找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2018; 15th European Confer Vittorio Ferrari,Martial Hebert,Yair Weiss Conference proceedings 2018 Springer Nature Sw

[復制鏈接]
樓主: 喜悅
11#
發(fā)表于 2025-3-23 10:07:54 | 只看該作者
ELEGANT: Exchanging Latent Encodings with GAN for Transferring Multiple Face Attributeser, they suffer from three limitations: (1) incapability of generating image by exemplars; (2) being unable to transfer multiple face attributes simultaneously; (3) low quality of generated images, such as low-resolution or artifacts. To address these limitations, we propose a novel model which rece
12#
發(fā)表于 2025-3-23 14:27:02 | 只看該作者
Dynamic Filtering with Large Sampling Field for ConvNetsdentical position but also multiple sampled neighbour regions. During sampling, residual learning is introduced to ease training and an attention mechanism is applied to fuse features from different samples. Such multiple samples enlarge the kernels’ receptive fields significantly without requiring
13#
發(fā)表于 2025-3-23 21:44:20 | 只看該作者
Pose Guided Human Video Generationper representation to explicitly control the dynamics in videos. Human pose, on the other hand, can represent motion patterns intrinsically and interpretably, and impose the geometric constraints regardless of appearance. In this paper, we propose a pose guided method to synthesize human videos in a
14#
發(fā)表于 2025-3-23 22:18:16 | 只看該作者
15#
發(fā)表于 2025-3-24 05:50:44 | 只看該作者
Joint Task-Recursive Learning for Semantic Segmentation and Depth Estimationion tasks. TRL can recursively refine the results of both tasks through serialized task-level interactions. In order to mutually-boost for each other, we encapsulate the interaction into a specific Task-Attentional Module (TAM) to adaptively enhance some counterpart patterns of both tasks. Further,
16#
發(fā)表于 2025-3-24 07:54:23 | 只看該作者
Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Networkearning methods cannot be easily applied to real-world applications due to the requirement of heavy computation. In this paper, we address this issue by proposing an accurate and lightweight deep network for image super-resolution. In detail, we design an architecture that implements a . upon a resi
17#
發(fā)表于 2025-3-24 11:17:14 | 只看該作者
18#
發(fā)表于 2025-3-24 16:21:50 | 只看該作者
NetAdapt: Platform-Aware Neural Network Adaptation for Mobile Applicationsisting algorithms simplify networks based on the number of MACs or weights, optimizing those indirect metrics may not necessarily reduce the direct metrics, such as latency and energy consumption. To solve this problem, NetAdapt incorporates direct metrics into its adaptation algorithm. These direct
19#
發(fā)表于 2025-3-24 21:26:18 | 只看該作者
20#
發(fā)表于 2025-3-24 23:55:13 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 22:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
新田县| 依兰县| 贺州市| 宁乡县| 盐源县| 南昌县| 姜堰市| 宣汉县| 吴川市| 塔城市| 平阴县| 黄山市| 利辛县| 浦东新区| 张家界市| 博兴县| 江阴市| 丽江市| 嘉祥县| 视频| 涪陵区| 牡丹江市| 通化市| 噶尔县| 逊克县| 台东县| 江门市| 盘锦市| 罗甸县| 沙河市| 原阳县| 米脂县| 句容市| 金坛市| 宁都县| 灵山县| 邻水| 唐河县| 广水市| 中方县| 上饶市|