找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2018; 15th European Confer Vittorio Ferrari,Martial Hebert,Yair Weiss Conference proceedings 2018 Springer Nature Sw

[復(fù)制鏈接]
查看: 8403|回復(fù): 58
樓主
發(fā)表于 2025-3-21 16:08:20 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Computer Vision – ECCV 2018
副標(biāo)題15th European Confer
編輯Vittorio Ferrari,Martial Hebert,Yair Weiss
視頻videohttp://file.papertrans.cn/235/234191/234191.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Computer Vision – ECCV 2018; 15th European Confer Vittorio Ferrari,Martial Hebert,Yair Weiss Conference proceedings 2018 Springer Nature Sw
描述The sixteen-volume set comprising the LNCS volumes 11205-11220 constitutes the refereed proceedings of the 15th European Conference on Computer Vision, ECCV 2018, held in Munich, Germany, in September 2018..The 776 revised papers presented were carefully reviewed and selected from 2439 submissions. The papers are organized in topical?sections on learning for vision; computational photography; human analysis; human sensing; stereo and reconstruction; optimization;?matching and recognition; video attention; and poster sessions..
出版日期Conference proceedings 2018
關(guān)鍵詞artificial intelligence; computer vision; face recognition; image coding; image processing; image reconst
版次1
doihttps://doi.org/10.1007/978-3-030-01252-6
isbn_softcover978-3-030-01251-9
isbn_ebook978-3-030-01252-6Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2018
The information of publication is updating

書目名稱Computer Vision – ECCV 2018影響因子(影響力)




書目名稱Computer Vision – ECCV 2018影響因子(影響力)學(xué)科排名




書目名稱Computer Vision – ECCV 2018網(wǎng)絡(luò)公開度




書目名稱Computer Vision – ECCV 2018網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computer Vision – ECCV 2018被引頻次




書目名稱Computer Vision – ECCV 2018被引頻次學(xué)科排名




書目名稱Computer Vision – ECCV 2018年度引用




書目名稱Computer Vision – ECCV 2018年度引用學(xué)科排名




書目名稱Computer Vision – ECCV 2018讀者反饋




書目名稱Computer Vision – ECCV 2018讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:50:38 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:13:50 | 只看該作者
Super-Identity Convolutional Neural Network for Face Hallucinationy metric for faces from these two domains. Extensive experimental evaluations demonstrate that the proposed SICNN achieves superior visual quality over the state-of-the-art methods on a challenging task to super-resolve 12?.?14 faces with an 8. upscaling factor. In addition, SICNN significantly impr
地板
發(fā)表于 2025-3-22 06:40:02 | 只看該作者
5#
發(fā)表于 2025-3-22 10:05:12 | 只看該作者
Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3input images while adding photorealism and retaining identity information. We combine face images generated by the proposed method with a real data set to train face recognition algorithms and evaluate the model quantitatively on two challenging data sets: LFW and IJB-A. The generated images by our
6#
發(fā)表于 2025-3-22 16:16:54 | 只看該作者
HairNet: Single-View Hair Reconstruction Using Convolutional Neural Networks continuous representation for hairstyles, which allows us to interpolate naturally between hairstyles. We use a large set of rendered synthetic hair models to train our network. Our method scales to real images because an intermediate 2D orientation field, automatically calculated from the real ima
7#
發(fā)表于 2025-3-22 17:25:40 | 只看該作者
8#
發(fā)表于 2025-3-22 21:47:47 | 只看該作者
9#
發(fā)表于 2025-3-23 04:27:54 | 只看該作者
Populations of Small Solar System Bodies,viors are heavily influenced by known areas in the images (., upcoming turns). CAR-Net successfully attends to these salient regions. Additionally, CAR-Net reaches state-of-the-art accuracy on the standard trajectory forecasting benchmark, Stanford Drone Dataset (SDD). Finally, we show CAR-Net’s abi
10#
發(fā)表于 2025-3-23 08:35:16 | 只看該作者
https://doi.org/10.1057/9780333982921y metric for faces from these two domains. Extensive experimental evaluations demonstrate that the proposed SICNN achieves superior visual quality over the state-of-the-art methods on a challenging task to super-resolve 12?.?14 faces with an 8. upscaling factor. In addition, SICNN significantly impr
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 05:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
卓资县| 河津市| 黔江区| 灵台县| 沁源县| 科技| 诸暨市| 体育| 克山县| 翁源县| 宁河县| 齐河县| 武山县| 明水县| 卫辉市| 台州市| 青冈县| 农安县| 睢宁县| 手游| 望谟县| 奉新县| 靖安县| 浦东新区| 汽车| 图木舒克市| 彭泽县| 杨浦区| 炉霍县| 内乡县| 冕宁县| 灌南县| 什邡市| 藁城市| 郓城县| 汉寿县| 金川县| 安康市| 伽师县| 芜湖市| 上饶市|