找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2018; 15th European Confer Vittorio Ferrari,Martial Hebert,Yair Weiss Conference proceedings 2018 Springer Nature Sw

[復(fù)制鏈接]
查看: 33327|回復(fù): 56
樓主
發(fā)表于 2025-3-21 17:25:07 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Computer Vision – ECCV 2018
副標(biāo)題15th European Confer
編輯Vittorio Ferrari,Martial Hebert,Yair Weiss
視頻videohttp://file.papertrans.cn/235/234190/234190.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Computer Vision – ECCV 2018; 15th European Confer Vittorio Ferrari,Martial Hebert,Yair Weiss Conference proceedings 2018 Springer Nature Sw
描述The sixteen-volume set comprising the LNCS volumes 11205-11220 constitutes the refereed proceedings of the 15th European Conference on Computer Vision, ECCV 2018, held in Munich, Germany, in September 2018..The 776 revised papers presented were carefully reviewed and selected from 2439 submissions. The papers are organized in topical?sections on learning for vision; computational photography; human analysis; human sensing; stereo and reconstruction; optimization;?matching and recognition; video attention; and poster sessions..
出版日期Conference proceedings 2018
關(guān)鍵詞3D; artificial intelligence; image processing; image reconstruction; image segmentation; imaging systems;
版次1
doihttps://doi.org/10.1007/978-3-030-01219-9
isbn_softcover978-3-030-01218-2
isbn_ebook978-3-030-01219-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2018
The information of publication is updating

書目名稱Computer Vision – ECCV 2018影響因子(影響力)




書目名稱Computer Vision – ECCV 2018影響因子(影響力)學(xué)科排名




書目名稱Computer Vision – ECCV 2018網(wǎng)絡(luò)公開度




書目名稱Computer Vision – ECCV 2018網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computer Vision – ECCV 2018被引頻次




書目名稱Computer Vision – ECCV 2018被引頻次學(xué)科排名




書目名稱Computer Vision – ECCV 2018年度引用




書目名稱Computer Vision – ECCV 2018年度引用學(xué)科排名




書目名稱Computer Vision – ECCV 2018讀者反饋




書目名稱Computer Vision – ECCV 2018讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:19:13 | 只看該作者
Programmable Triangulation Light Curtainsstead, it needs to only monitor if any object comes within its near proximity which is an easier task than full depth scanning. We introduce a novel device that monitors the presence of objects on a virtual shell near the device, which we refer to as a light curtain. Light curtains offer a light-wei
板凳
發(fā)表于 2025-3-22 01:04:23 | 只看該作者
地板
發(fā)表于 2025-3-22 07:19:51 | 只看該作者
5#
發(fā)表于 2025-3-22 09:11:47 | 只看該作者
Materials for Masses: SVBRDF Acquisition with a Single Mobile Phone Imageby a handheld mobile phone camera. Our method images the surface under arbitrary environment lighting with the flash turned on, thereby avoiding shadows while simultaneously capturing high-frequency specular highlights. We train a CNN to regress an SVBRDF and surface normals from this image. Our net
6#
發(fā)表于 2025-3-22 12:57:07 | 只看該作者
Video Object Segmentation with Joint Re-identification and Attention-Aware Mask Propagatione and pose variations, the problem is compounded when instances occlude each other causing failures in tracking. In this study, we formulate a deep recurrent network that is capable of segmenting and tracking objects in video simultaneously by their temporal continuity, yet able to re-identify them
7#
發(fā)表于 2025-3-22 20:39:56 | 只看該作者
Spatio-Temporal Transformer Network for Video Restorationly consider only a pair of consecutive frames and hence are not capable of capturing long-range temporal dependencies and fall short of establishing correspondences across several timesteps. To alleviate these problems, we propose a novel Spatio-temporal Transformer Network (STTN) which handles mult
8#
發(fā)表于 2025-3-23 00:07:34 | 只看該作者
9#
發(fā)表于 2025-3-23 04:08:01 | 只看該作者
10#
發(fā)表于 2025-3-23 07:30:41 | 只看該作者
Multi-view to Novel View: Synthesizing Novel Views With Self-learned Confidence pose from given source images. We propose an end-to-end trainable framework that learns to exploit multiple viewpoints to synthesize a novel view without any 3D supervision. Specifically, our model consists of a flow prediction module and a pixel generation module to directly leverage information p
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 15:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临漳县| 绍兴县| 沭阳县| 奉新县| 合山市| 兰州市| 汨罗市| 秦安县| 洛隆县| 金秀| 盐津县| 温州市| 盘山县| 忻城县| 昌邑市| 连城县| 金门县| 芷江| 柞水县| 自治县| 峨眉山市| 渑池县| 同江市| 湘潭县| 斗六市| 张家口市| 雅江县| 乌鲁木齐县| 临夏县| 陆川县| 沂水县| 黄浦区| 莱芜市| 红河县| 蒙城县| 高碑店市| 景宁| 绩溪县| 澄江县| 湾仔区| 扶余县|